C++ Object Persistence with ODB

Copyright © 2009-2012 Code Synthesis Tools CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
[GNU Free Documentation License, versior] 1.3; with no Invariant Sections, no Front-Cover Texts

and no Back-Cover Texts.

Revision 2.1, November 2012

This revision of the manual describes ODB 2.1.0 and is available in the following formats:

XHTML] PDHR, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.3.txt
http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

Table of Contents

Table of Contents

: 1
IAbout This Documeht 1
[More Informatioh . S 2

PART | OBJECT- RELATIONAL MAPPIN(IS 3

[1 Introductiop . . S 4
(1.1 Archltecture and WorkfloIW 5
|1 3 Supported C++ Standalrds C e 9

2 Hello World Example . e e 10
2.1 Declaring a Per3|stent CI e 10
[2.2 Generating Database Suggort g:ode. Ce e 13
2.3 Compiling and Runnihg 14
[2.4 Making Objects Persistént . e 15
[2.5 Querying the Database for Objects C e 19
[2.6 Updating Persistent Objgcts. 21
[2.7 Defining and Using Views 23
[2.8 Deleting Persistent Objcts .~ 25
[2.9 Summary . S 26

[3 Working with Per5|stent Objebts e 27
|3 1 Concepts and Terminoldgy . . e 27
[3.2 Declaring Persistent Objects and leues e 29
[3.3 Object and View Point¢rs 32
B4 Databage 34
[3.5 Transactions 36
[3.6 Connectionls . C e 41
[3.7 Error Handling and Recovéry C e 43
[3.8 Making Objects Persistent 44
[3.9 Loading Persistent Objdcts 45
[3.10 Updating Persistent Objgcts 47
[3.11 Deleting Persistent Objgets. 49
[3.12 Executing Native SQL Statemgnts 51
[3.13 Tracing SOQL Statement Execution 52
[3.14 ODB Exceptions 55

[4 Querying the Databdse 60
[4.1 ODB Query Languape 61
[4.2 Parameter Binding L. 63
4.3 Executinga Query, 63
[4.4 QueryResUlt 65

[5 Containells . . 70
[5.1 Ordered Contamérs S 71

Revision 2.1, November 2012 C++ Object Persistence with ODB i

Table of Contents

[5.2 Set and Multiset Containgrs
(5.3 Map and Multimap Containgrs.
[5.4 Using Custom Containgrs.
[6 Relationshigs
[6.1 Unidirectional Relatlonshllos
[6.1.1 To-One Relationships .
[6.1.2 To-Many Relationships .
[6.2 Bidirectional Relationships .
[6.2.1 One-to-One Relationships .
[6.2.2 One-to-Many Relationshjps.
[6.2.3 Many-to-Many Relationships
[6.3 Circular Relationships.
[6.4 Lazy Pointefs.
[6.5 Using Custom Smart Pomﬂers
[7 Value Types . .
[7.1 Simple Value Types .
[7.2 Composite Value Types .
[7.2.1 Composite Object Ids
[7.2.2 Composite Value Column and Table Ndmes
[7. 3 Pomters anlULL Value Semanti¢s
(8.1 Reuse Inherltanlce .
[8.2 Polymorphism Inheritanice. .
[8.2.1 Performance and Limitations
|8 3 Mixed Inheritande.
:
|9 1 Object Vlevvls
[9.2 Table Views .
[9.3 Mixed Views .
[9.4 View Query Cond|t|0|1|s
[9.5 Native Viewp . .
[9.6 Other View Features and leltatlbns .
10 Sessign .
(10.1 Object CacH1e
[11 Optimistic Concurrengy.
[12 ODB Pragma Langudge
[12.1 Object Type Pragnas
:
[12.1.2pointer | .
[12.1.3abstract |
(12.1.4readonly |
[12.1.50ptimistic | .

ii C++ Object Persistence with ODB

73
74
15
7
80
81
81
83
86
87
88
89
92
97
Q9
Q9
Q9
102
103
106
110
112
114
119
122
123
125
131
134
135
137
139
141
144
146
152
155
155
156
157
157
158
158

Revision 2.1, November 2012

Table of Contents

12.1.7callback |159
12.1.8schemal1e61
12.1.9polymorphic | 164
(12.1.10session | . 115
[12.1.11definition | e 515
12.1.12transient165
[12.2 View Type Pragmps. 166
[12.2.10bject | 1le6
... 1leb
... 1les
[12.2.4pointer |.167
[12.2.5callback |167
[12.2.6definition S 1 o ¥ 4
[12.2.7transient |167
[12.3 Value Type Pragmas 167
e (51
[12.3.2id type |.169
12.3.3null N0t nutt | 170
[12.3.4default11
[12.3.50ptions112
[12.3.6readonly |172
[12.3.7definition A I 47
[12.3.8transient | 174
(12.3.9unordered | 174
[12.3.10index type | e 2!
12.3.11key type | 114
[12.3.12value type | e 2!
(12.3.13value null /value not null (. 175
(12.3.14id options | e 45
[12.3.15index options | e 45
[12.3.16key options | 176
[12.3.17value options |16
12.3.18d column (. 176
12.3.19ndex column 176
[12.3.20key column | e A 4
[12.3.21value column |77
[(12.4 Data Member Pragnfjas 177
T <
e 4
e =10
12.4.4d type180
[12.4.5¢get /set /access |181
12.4.6null Mot nut | 185

Revision 2.1, November 2012 C++ Object Persistence with ODB iii

Table of Contents

12.4.7default 186
[12.4.80ptions | 188
[12.4.9column (object, composne valqe) A =1
[12.4.10column (view)189
[12.4.1ltransient |189
12.4.12readonly |19
(12.4.13virtual | e e X |
(12.4.14inverse | e Ko 1<)
(12.4.15version | e Ko
12.4.16index |19
12.4.17unique |97
[12.4.18unordered 197
[12.4.1%able |97
[12.4.20index type | T e <
[12.4.21key type |19
[12.4.22value type | e Ko o)
(12.4.23value null /value not null (.19
(12.4.24id options | {0 0]
[12.4.25index options | {0 0]
[12.4.26key options |20
[12.4.27value options | e ~{ e X
12.4.28d column (.20
[12.4.29ndex column 202
(12.4.30key column | C s s 202
12.4.31value column 203
[12.5 Namespace Pragmmas 203
12.5.1pointer204
1 013
(12.5.3schemal 206
[12.5.4session | 206
[12.6 Index Definition Pragmlas {0
[12.7 Database Type Mapping Pragmas 210
[12.8 C++ Compiler Warnings. 213
(1281GNUC+F.21
12.8.2 VisualC+f¢ 214
12.8.3SunC++215
1284IBMXLC++ 215
(12.85HPaCH+.215
12.8.6 Clang. 216
[PART I DATABASE SYSTEM$ 2 W 4
13 MySOL Databagse 218
[13.1 MySOL Type Mapping 218
[13.2 MySQL Database Clagss. 220

iv C++ Object Persistence with ODB Revision 2.1, November 2012

[13.3 MySOL Connection and Connection Fagtory .
[13.4 MySQL Exceptions . .
[13.5 MySQL Limitations .

[13.5.1 Foreign Key Constra|hIs
[13.6 MySQL Index Definitions.
[14 SQLite Databake .
(14.1 SQLite Type Mapplmg
[14.2 SQLite Database Class . . .
[14.3 SQLite Connection and Connection Fa¢tory
[14.4 SQLite Exceptions .
[14.5 SQLite Limitations
[14.5.1 Query Result Cachlng
[14.5.2 Automatic Assignment of Objectllds
[14.5.3 Foreign Key Constraihts
[14.5.4 Constraint Violations .
[14.5.5 Sharing of Queries
[14.6 SQLite Index Definitions .
[15 PostgreSQL Database. .
[15.1 PostgreSQL Type Mapp|ng .
[15.2 PostgreSQL Database Class.

[15.3 PostgreSQL Connection and Connection chtory.

[15.4 PostgreSQL Exceptigns .

[15.5 PostgreSQL Limitatiohs .
[15.5.1 Query Result Caching.
[15.5.2 Foreign Key Constraihts .
[15.5.3 Unique Constraint Violatidns
[15.5.4 Date-Time Format.
[15.5.5 Timezongs .
[15.5.6NUMERICType Support

[15.6 PostgreSQL Index Definitidns

[16 Oracle Database .

[16.1 Oracle Type Mapplhg

[16.2 Oracle Database Clpss . . .

[16.3 Oracle Connection and Connection Fattory .

[16.4 Oracle Exceptiohs

[16.5 Oracle Limitations
[16.5.1 Identifier Truncation
[16.5.2 Query Result Caching.
[16.5.3 Foreign Key Constraihts .
[16.5.4 Unique Constraint Violatidns
(16.5.5 Largd=LOATandNUMBERype$
[16.5.6 Timezongs
[16.5.7LONGType$

Revision 2.1, November 2012 C++ Object Persistence with ODB

Table of Contents

223
227
228
228
228
229
229
231
234
238
239
239
239
240
241
241
241
242
242
244
246
250
251
251
251
251
251
252
252
252
253
253
255
258
261
263
263
264
264
264
264
265
265

Table of Contents

[16.5.8 LOB Types and By-Value Accessors/Modifiers.
[16.6 Oracle Index Definitions .
[17 Microsoft SQL Server Database
[17.1 SOL Server Type Mapping
[17.2 SQL Server Database Class. .
[17.3 SQL Server Connection and Connection Falctory
[17.4 SQL Server Exceptigns . .
[17.5 SQL Server Limitations .
[17.5.1 Query Result Caching.
[17.5.2 Foreign Key Constraihts .
[17.5.3 Unique Constraint Violatidns
[17.5.4 Multithreaded Windows Applicatigns
[17.5.5 Affected Row Count and DDL Statemgnts .

[17.5.6 Long Data and Automatically Assigned Objedt Ids .

[17.5.7 Long Data and By-Value Accessors/Modifiers .
[17.6 SQL Server Index Definitions
[PART Il PROFILES$.
[18 Profiles Introductidn
[19 Boost Profile .
[19.1 Smart Pointers lerdry
[19.2 Unordered Containers Library
[19.3 Multi-Index Container Libraly.
[19.4 Optional Librany . .
[19.5 Date Time Library .
(19.5.1 MySQL Database Type Map|d|ng .
[19.5.2 SOLite Database Type Mapping
[19.5.3 PostgreSQL Database Type Mapping .
[19.5.4 Oracle Database Type Mapping
[19.5.5 SOL Server Database Type Mapping .
(19.6 Uuid Library. . .
(19.6.1 MySQL Database Type Map|d|ng .
[19.6.2 SOLite Database Type Mapping
[19.6.3 PostgreSQL Database Type Mapping .
[19.6.4 Oracle Database Type Mapping
[19.6.5 SOL Server Database Type Mapping .
20 Ot Profil¢ . e
[20.1 Basic Typ¢s . .
[20.1.1 MySQL Database Type Map|d|ng .
[20.1.2 SOLite Database Type Mapping
[20.1.3 PostgreSQL Database Type Mapping .
[20.1.4 Oracle Database Type Mapping
[20.1.5 SOL Server Database Type Mapping .
[20.2 Smart Pointdrs . e

Vi C++ Object Persistence with ODB

265
265
267
267
2171
277
280
281
282
282
282
282
282
283
283
283
284
285
286
286
287
288
289
290
201
292
293
293
294
295
296
296
296
296
296
298
298
299
300
300
301
301
302

Revision 2.1, November 2012

Table of Contents

[20.3 Containers Librayy 303
[20.4 Date Time Typés 304
[20.4.1 MySOL Database Type Mapging 305
[20.4.2 SOLite Database Type Mapping 305
[20.4.3 PostgreSOQL Database Type Mapping 306
[20.4.4 Oracle Database Type Mapping 306
[20.4.5 SOL Server Database Type Mapping 307

Revision 2.1, November 2012 C++ Object Persistence with ODB Vii

Preface

Preface

As more critical aspects of our lives become dependant on software systems, more and more
applications are required to save the data they work on in persistent and reliable storage. Database
management systems and, in particular, relational database management systems (RDBMS) are
commonly used for such storage. However, while the application development techniques and
programming languages have evolved significantly over the past decades, the relational database
technology in this area stayed relatively unchanged. In particular, this led to the now infamous
mismatch between the object-oriented model used by many modern applications and the rela-
tional model still used by RDBMS.

While relational databases may be inconvenient to use from modern programming languages,
they are still the main choice for many applications due to their maturity, reliability, as well as the
availability of tools and alternative implementations.

To allow application developers to utilize relational databases from their object-oriented applica-
tions, a technique called object-relational mapping (ORM) is often used. It involves a conversion
layer that maps between objects in the application’s memory and their relational representation in
the database. While the object-relational mapping code can be written manually, automated ORM
systems are available for most object-oriented programming languages in use today.

ODB is an ORM system for the C++ programming language. It was designed and implemented
with the following main goals:

® Provide a fully-automatic ORM system. In particular, the application developer should not
have to manually write any mapping code, neither for persistent classes nor for their data
member.

® Provide clean and easy to use object-oriented persistence model and database APIs that
support the development of realistic applications for a wide variety of domains.

® Provide a portable and thread-safe implementation. ODB should be written in standard C++
and capable of persisting any standard C++ classes.

® Provide profiles that integrate ODB with type systems of widely-used frameworks and
libraries such as Qt and Boost.

® Provide a high-performance and low overhead implementation. ODB should make efficient
use of database and application resources.

About This Document

The goal of this manual is to provide you with an understanding of the object persistence model
and APIs which are implemented by ODB. As such, this document is intended for C++ applica-
tion developers and software architects who are looking for a C++ object persistence solution.
Prior experience with C++ is required to understand this document. A basic understanding of

Revision 2.1, November 2012 C++ Object Persistence with ODB 1

More Information

relational database systems is advantageous but not expected or required.

More Information

Beyond this manual, you may also find the following sources of information useful:

[ODB Compiler Command Line Manual.

® ThelINSTALL files in the ODB source packages provide build instructions for various plat-
forms.

® Theodb-examples package contains a collection of examples and a README file with

an overview of each example.

e The[odb-usels mailing list is the place to ask technical questions about ODB. Furthermore,
the searchable archifes may already have answers to some of your questions.

2 C++ Object Persistence with ODB Revision 2.1, November 2012

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

PART | OBJECT-RELATIONAL MAPPING

PART | OBJECT-RELATIONAL MAPPING

Part | describes the essential database concepts, APIs, and tools that together comprise the
object-relational mapping for C++ as implemented by ODB. It consists of the following chapters.

[Hello World Example

[Working with Persistent Obje¢ts

1

2

3

4 [Querying the Database
5 [Containers
6
7
8
9

Relationships
\Value Typeg

nheritance

< 5
9"}
z

10 essio

11 [Optimistic Concurrengy

12 |ODB Pragma Languabe

Revision 2.1, November 2012 C++ Object Persistence with ODB 3

1 Introduction

1 Introduction

ODB is an object-relational mapping (ORM) system for C++. It provides tools, APIs, and library
support that allow you to persist C++ objects to a relational database (RDBMS) without having to
deal with tables, columns, or SQL and without manually writing any of the mapping code.

ODB is highly flexible and customizable. It can either completely hide the relational nature of the
underlying database or expose some of the details as required. For example, you can automati-
cally map basic C++ types to suitable SQL types, generate the relational database schema for
your persistent classes, and use simple, safe, and yet powerful object query language instead of
SQL. Or you can assign SQL types to individual data members, use the existing database schema
and run native SQISELECTqueries. In fact, at an extreme, ODB can be usgdsas conve-

nient way to handle results of native SQL queries.

ODB is not a framework. It does not dictate how you should write your application. Rather, it is
designed to fit into your style and architecture by only handling object persistence and not inter-
fering with any other functionality. There is no common base type that all persistent classes
should derive from nor are there any restrictions on the data member types in persistent classes.
Existing classes can be made persistent with a few or no modifications.

ODB has been designed for high performance and low memory overhead. Prepared statements
are used to send and receive object state in binary format instead of text which reduces the load
on the application and the database server. Extensive caching of connections, prepared state-
ments, and buffers saves time and resources on connection establishment, statement parsing, an
memory allocations. For each supported database system the native C API is used instead of
ODBC or higher-level wrapper APIs to reduce overhead and provide the most efficient imple-
mentation for each database operation. Finally, persistent classes have zero memory overhead
There are no hidden "database" members that each class must have nor are there per-object dat
structures allocated by ODB.

In this chapter we present a high-level overview of ODB. We will start with the ODB architecture
and then outline the workflow of building an application that uses ODB. We will then continue

by contrasting the drawbacks of the traditional way of saving C++ objects to relational databases
with the benefits of using ODB for object persistence. We conclude the chapter by discussing the
C++ standards supported by ODB. The next chapter takes a more hands-on approach and show:
the concrete steps necessary to implement object persistence in a simple "Hello World" applica-
tion.

4 C++ Object Persistence with ODB Revision 2.1, November 2012

1.1 Architecture and Workflow

1.1 Architecture and Workflow

From the application developer’s perspective, ODB consists of three main components: the ODB
compiler, the common runtime library, calldtbodb , and the database-specific runtime
libraries, calledibodb-<database> , Where <database> is the name of the database system
this runtime is for, for examplépbodb-mysgl . For instance, if the application is going to use

the MySQL database for object persistence, then the three ODB components that this application
will use are the ODB compilelibodb andlibodb-mysq|

The ODB compiler generates the database support code for persistent classes in your application.
The input to the ODB compiler is one or more C++ header files defining C++ classes that you
want to make persistent. For each input header file the ODB compiler generates a set of C++
source files implementing conversion between persistent C++ classes defined in this header and
their database representation. The ODB compiler can also generate a database schema file tha
creates tables necessary to store the persistent classes.

The ODB compiler is a real C++ compiler except that it produces C++ instead of assembly or
machine code. In particular, it is not an ad-hoc header pre-processor that is only capable of recog-
nizing a subset of C++. ODB is capable of parsing any standard C++ code.

The common runtime library defines database system-independent interfaces that your applica-
tion can use to manipulate persistent objects. The database-specific runtime library provides
implementations of these interfaces for a concrete database as well as other database-specific util
ities that are used by the generated code. Normally, the application does not use the
database-specific runtime library directly but rather works with it via the common interfaces from
libodb . The following diagram shows the object persistence architecture of an application that
uses MySQL as the underlying database system:

Application

Persistent Classes Application Code

ODBE
Generated Code 0DE Common Runtime
ODB MyS0L Runtime

MyS5QL Database

Revision 2.1, November 2012 C++ Object Persistence with ODB 5

1.1 Architecture and Workflow

The ODB system also defines two special-purpose languages: the ODB Pragma Language and
ODB Query Language. The ODB Pragma Language is used to communicate various properties of
persistent classes to the ODB compiler by means of spggu@gma directives embedded in the

C++ header files. It controls aspects of the object-relational mapping such as names of tables and
columns that are used for persistent classes and their members or mapping between C++ types
and database types.

The ODB Query Language is an object-oriented database query language that can be used to
search for objects matching certain criteria. It is modeled after and is integrated into C++ allow-
ing you to write expressive and safe queries that look and feel like ordinary C++.

The use of the ODB compiler to generate database support code adds an additional step to your
application build sequence. The following diagram outlines the typical build workflow of an
application that uses ODB:

6 C++ Object Persistence with ODB Revision 2.1, November 2012

1.1 Architecture and Workflow

Application Code

#include

Generated Code

C++ Header #include

ODEB Runtime Libraries

libadb Llibodb-mysgl

Database Application Executable
Schema

Revision 2.1, November 2012 C++ Object Persistence with ODB 7

1.2 Benefits

1.2 Benefits

The traditional way of saving C++ objects to relational databases requires that you manually
write code which converts between the database and C++ representations of each persistent class
The actions that such code usually performs include conversion between C++ values and strings
or database types, preparation and execution of SQL queries, as well as handling the result sets
Writing this code manually has the following drawbacks:

e Difficult and time consuming. Writing database conversion code for any non-trivial appli-
cation requires extensive knowledge of the specific database system and its APIs. It can also
take a considerable amount of time to write and maintain. Supporting multi-threaded appli-
cations can complicate this task even further.

® Suboptimal performance.Optimal conversion often requires writing large amounts of extra
code, such as parameter binding for prepared statements and caching of connections, state-
ments, and buffers. Writing code like this in an ad-hoc manner is often too difficult and time
consuming.

® Database vendor lock-in.The conversion code is written for a specific database which
makes it hard to switch to another database vendor.

® |ack of type safety.lIt is easy to misspell column names or pass incompatible values in
SQL queries. Such errors will only be detected at runtime.

e Complicates the application. The database conversion code often ends up interspersed
throughout the application making it hard to debug, change, and maintain.

In contrast, using ODB for C++ object persistence has the following benefits:

® Ease of useODB automatically generates database conversion code from your C++ class
declarations and allows you to manipulate persistent objects using simple and thread-safe
object-oriented database APIs.

® Concise codeWith ODB hiding the details of the underlying database, the application logic
is written using the natural object vocabulary instead of tables, columns and SQL. The
resulting code is simpler and thus easier to read and understand.

® Optimal performance. ODB has been designed for high performance and low memory
overhead. All the available optimization techniques, such as prepared statements and exten-
sive connection, statement, and buffer caching, are used to provide the most efficient imple-
mentation for each database operation.

e Database portability. Because the database conversion code is automatically generated, it is
easy to switch from one database vendor to another. In fact, it is possible to test your appli-
cation on several database systems before making a choice.

e Safety. The ODB object persistence and query APIs are statically typed. You use C++ iden-
tifiers instead of strings to refer to object members and the generated code makes sure
database and C++ types are compatible. All this helps catch programming errors at
compile-time rather than at runtime.

8 C++ Object Persistence with ODB Revision 2.1, November 2012

1.3 Supported C++ Standards

e Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in persistent classes. The database support code is kept separately from the
class declarations and application logic. This makes the application easier to debug and
maintain.

Overall, ODB provides an easy to use yet flexible and powerful object-relational mapping (ORM)
system for C++. Unlike other ORM implementations for C++ that still require you to write
database conversion or member registration code for each persistent class, ODB keeps persisten
classes purely declarative. The functional part, the database conversion code, is automatically
generated by the ODB compiler from these declarations.

1.3 Supported C++ Standards

ODB provides support for ISO/IEC C++ 1998 (C++98), ISO/IEC TR 19768 C++ Library Exten-
sions (C++ TR1), and ISO/IEC C++ 2011 (C++11). While the majority of the examples in this
manual use C++98, support for the new functionality and library components introduced in TR1
and C++11 are discussed throughout the documentcH+EL example in th@db-examples

package also shows ODB support for various C++11 features.

Revision 2.1, November 2012 C++ Object Persistence with ODB 9

2 Hello World Example

2 Hello World Example

In this chapter we will show how to create a simple C++ application that relies on ODB for object
persistence using the traditional "Hello World" example. In particular, we will discuss how to
declare persistent classes, generate database support code, as well as compile and run our applic
tion. We will also learn how to make objects persistent, load, update and delete persistent objects,
as well as query the database for persistent objects that match certain criteria. The example alsc
shows how to define and use views, a mechanism that allows us to create projections of persistent
objects, database tables, or to handle results of native SQL queries.

The code presented in this chapter is based ohdll@ example which can be found in the
odb-examples package of the ODB distribution.

2.1 Declaring a Persistent Class

In our "Hello World" example we will depart slightly from the norm and say hello to people
instead of the world. People in our application will be represented as objects of C++ class
person which is saved iperson.hxx

/I person.hxx
1

#include <string>

class person
{
public:
person (const std::string& first,
const std::string& last,
unsigned short age);

const std::string& first () const;
const std::string& last () const;

unsigned short age () const;
void age (unsigned short);

private:

std::string first_;
std::string last_;
unsigned short age_;

g

In order not to miss anyone whom we need to greet, we would like to sgyerso@ objects in
a database. To achieve this we declarg#ison class as persistent:

10 C++ Object Persistence with ODB Revision 2.1, November 2012

2.1 Declaring a Persistent Class

/I person.hxx
I

#include <string>

#include <odb/core.hxx> // (1)

#pragma db object 11 (2)
class person
{
private:
person () {} 11 (3)

friend class odb::access; // (4)

#pragma db id auto Il (5)
unsigned long id_; I (5)

std::string first_;
std::string last_;
unsigned short age_;

h

To be able to save tlperson objects in the database we had to make five changes, marked with
() to (5), to the original class definition. The first change is the inclusion of the ODB header
<odb/core.hxx> . This header provides a number of core ODB declarations, such as
odb::access , that are used to define persistent classes.

The second change is the additiondbfobject pragma just before the class definition. This
pragma tells the ODB compiler that the class that follows is persistent. Note that making a class
persistent does not mean that all objects of this class will automatically be stored in the database.
You would still create ordinary dransientinstances of this class just as you would before. The
difference is that now you can make such transient instances persistent, as we will see shortly.

The third change is the addition of the default constructor. The ODB-generated database support
code will use this constructor when instantiating an object from the persistent state. Just as we
have done for thperson class, you can make the default constructor private or protected if you
don’t want to make it available to the users of your class. Note also that with some limitations it
is possible to have a persistent class without the default constructor.

With the fourth change we make tbdb::access class a friend of oyserson class. This is
necessary to make the default constructor and the data members accessible to the databas
support code. If your class has a public default constructor and either public data members or
public accessors and modifiers for the data members, thdnghd declaration is unneces-

sary.

Revision 2.1, November 2012 C++ Object Persistence with ODB 11

2.1 Declaring a Persistent Class

The final change adds a data member catled which is preceded by another pragma. In ODB
every persistent object normally has a unique, within its class, identifier. Or, in other words, no
two persistent instances of the same type have equal identifiers. While it is possible to define a
persistent class without an object id, the number of database operations that can be performed or
such a class is limited. For our class we use an integer iddi e auto pragma that
precedes thiel . member tells the ODB compiler that the following member is the object’s iden-
tifier. Theauto specifier indicates that it is a database-assigned id. A unique id will be automati-
cally generated by the database and assigned to the object when it is made persistent.

In this example we chose to add an identifier because none of the existing members could serve
the same purpose. However, if a class already has a member with suitable properties, then it is
natural to use that member as an identifier. For example, ipengion class contained some

form of personal identification (SSN in the United States or ID/passport number in other coun-
tries), then we could use that as an id. Or, if we stored an email associated with each person, then
we could have used that if each person is presumed to have a unique email address.

As another example, consider the following alternative version gfdtson class. Here we use

one of the existing data members as id. Also the data members are kept private and are insteac
accessed via public accessor and modifier functions. Finally, the ODB pragmas are grouped
together and are placed after the class definition. They could have also been moved into a sepa-
rate header leaving the original class completely unchanged (for more information on such a
non-intrusive conversion refer(to Chapter 12, "ODB Pragma Landuage").

class person

{

public:
person ();

const std::string& email () const;
void email (const std::string&);

const std::string& get_name () const;
std::string& set_name ();

unsigned short getAge () const;
void setAge (unsigned short);

private:

std::string email_;
std::string name_;
unsigned short age_;

%

#pragma db object(person)
#pragma db member(person::email_) id

12 C++ Object Persistence with ODB Revision 2.1, November 2012

2.2 Generating Database Support Code

Now that we have the header file with the persistent class, let's see how we can generate that
database support code.

2.2 Generating Database Support Code

The persistent class definition that we created in the previous section was particularly light on any
code that could actually do the job and store the person’s data to a database. There was no serial
ization or deserialization code, not even data member registration, that you would normally have
to write by hand in other ORM libraries for C++. This is because in ODB code that translates
between the database and C++ representations of an object is automatically generated by the
ODB compiler.

To compile thgperson.hxx header we created in the previous section and generate the support
code for the MySQL database, we invoke the ODB compiler from a terminal (UNIX) or a
command prompt (Windows):

odb -d mysql --generate-query person.hxx

We will use MySQL as the database of choice in the remainder of this chapter, though other
supported database systems can be used instead.

If you haven't installed the common ODB runtime libralipddb) or installed it into a direc-
tory where C++ compilers don't search for headers by default, then you may get the following
error:

person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory

To resolve this you will need to specify thigodb headers location with thé preprocessor
option, for example:

odb -l1.../libodb -d mysqgl --generate-query person.hxx
Here.../libodb represents the path to thigodb directory.

The above invocation of the ODB compiler produces three C++ filesson-odb.hxx
person-odb.ixx , person-odb.cxx . You normally don’t use types or functions contained
in these files directly. Rather, all you have to do is inclpdeson-odb.hxx in C++ files
where you are performing database operations with classespeoson.hxx as well as
compileperson-odb.cxx and link the resulting object file to your application.

You may be wondering what thegenerate-query option is for. It instructs the ODB
compiler to generate optional query support code that we will use later in our "Hello World"
example. Another option that we will find usefuligenerate-schema . This option makes

the ODB compiler generate a fourth filgerson.sql , which is the database schema for the
persistent classes definedparson.hxx

Revision 2.1, November 2012 C++ Object Persistence with ODB 13

2.3 Compiling and Running

odb -d mysql --generate-query --generate-schema person.hxx

The database schema file contains SQL statements that creates tables necessary to store th
persistent classes. We will learn how to use it in the next section.

If you would like to see a list of all the available ODB compiler options, refer th thel ODB
[Compiler Command Line Manyal.

Now that we have the persistent class and the database support code, the only part that is left is
the application code that does something useful with all of this. But before we move on to the fun
part, let’s first learn how to build and run an application that uses ODB. This way when we have
some application code to try, there are no more delays before we can run it.

2.3 Compiling and Running

Assuming that thenain() function with the application code is savedinver.cxx and the
database support code and schema are generated as described in the previous section, to build ot
application we will first need to compile all the C++ source files and then link them with two
ODB runtime libraries.

On UNIX, the compilation part can be done with the following commands (subsfititevith
your C++ compiler name; for Microsoft Visual Studio setup, seediheexamples package):

c++ - driver.cxx
c++ -c person-odb.cxx

Similar to the ODB compilation, if you get an error stating that a heaaeibih or odb/mysq|
directory is not found, you will need to use the preprocessor option to specify the location of
the common ODB runtime library lifjodb) and MySQL ODB runtime library
(libodb-mysqgl).

Once the compilation is done, we can link the application with the following command:
c++ -0 driver driver.o person-odb.o -lodb-mysql -lodb

Notice that we link our application with two ODB librariéisodb which is a common runtime
library andlibodb-mysql which is a MySQL runtime library (if you use another database,
then the name of this library will change accordingly). If you get an error saying that one of these
libraries could not be found, then you will need to uselthdinker option to specify their loca-
tions.

Before we can run our application we need to create a database schema using the generatec
person.sql file. For MySQL we can use threysql client program, for example:

14 C++ Object Persistence with ODB Revision 2.1, November 2012

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

2.4 Making Objects Persistent

mysql --user=odb_test --database=o0db_test < person.sq|l

The above command will log in to a local MySQL server as adlrtest without a password
and use the database nanogith test . Beware that after executing this command, all the data
stored in theodb_test database will be deleted.

Note also that using a standalone generated SQL file is not the only way to create a database
schema in ODB. We can also embed the schema directly into our application or use custom
schemas that were not generated by the ODB compiler. Refer to Section 3.4, "Database" for
details.

Once the database schema is ready, we run our application using the same login and databas
name:

Jdriver --user odb_test --database odb_test

2.4 Making Objects Persistent

Now that we have the infrastructure work out of the way, it is time to see our first code fragment
that interacts with the database. In this section we will learn how to peaken objects persis-
tent:

/I driver.cxx
1

#include <memory> // std::auto_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{

try

{

auto_ptr<database> db (new odb::mysql::database (argc, argv));

unsigned long john_id, jane_id, joe_id;

Revision 2.1, November 2012 C++ Object Persistence with ODB 15

2.4 Making Objects Persistent

/I Create a few persistent person objects.
I
{

person john ("John", "Doe", 33);

person jane ("Jane", "Doe", 32);

person joe ("Joe", "Dirt", 30);

transaction t (db->begin ());

/I Make objects persistent and save their ids for later use.
I

john_id = db->persist (john);

jane_id = db->persist (jane);

joe_id = db->persist (joe);

t.commit ();

}
}

catch (const odb::exception& e)

{

cerr << e.what () << endl;
return 1;

}
}

Let's examine this code piece by piece. At the beginning we include a bunch of headers. After the
standard C++ headers we includadb/database.hxx> and<odb/transaction.hxx>

which define database system-independelbt:database = andodb::transaction inter-
faces. Then we includeodb/mysqgl/database.hxx> which defines the MySQL imple-
mentation of the database interface. Finally, we include person.hxx and

person-odb.hxx which define our persisteperson class.

Then we have twaising namespace directives. The first one brings in the names from the
standard namespace and the second brings in the ODB declarations which we will use later in the
file. Notice that in the second directive we usedlblb::core namespace instead of justb.

The former only brings into the current namespace the essential ODB names, such as the
database andtransaction classes, without any of the auxiliary objects. This minimizes the
likelihood of name conflicts with other libraries. Note also that you should continue using the
odb namespace when qualifying individual names. For example, you should write
odb::database , notodb::core::database

Once we are imain() , the first thing we do is create the MySQL database object. Notice that
this is the last line imriver.cxx that mentions MySQL explicitly; the rest of the code works
through the common interfaces and is database system-independent. We aigg tlaegv
mysql::database constructor which automatically extract the database parameters, such as
login name, password, database name, etc., from the command line. In your own applications you
may prefer to use othenysql::database constructors which allow you to pass this informa-

16 C++ Object Persistence with ODB Revision 2.1, November 2012

2.4 Making Objects Persistent

tion directly (Section 13.2, "MySOL Database Class").

Next, we create threggerson objects. Right now they are transient objects, which means that if
we terminate the application at this point, they will be gone without any evidence of them ever
existing. The next line starts a database transaction. We discuss transactions in detail later in this
manual. For now, all we need to know is that all ODB database operations must be performed
within a transaction and that a transaction is an atomic unit of work; all database operations
performed within a transaction either succeed (committed) together or are automatically undone
(rolled back).

Once we are in a transaction, we call pleesist() database function on each of gearson

objects. At this point the state of each object is saved in the database. However, note that this
state is not permanent until and unless the transaction is committed. If, for example, our applica-
tion crashes at this point, there will still be no evidence of our objects ever existing.

In our case, one more thing happens when wepeadist() . Remember that we decided to

use database-assigned identifiers formanson objects. The call tpersist() is where this
assignment happens. Once this function returnsidthe member contains this object’s unique
identifier. As a convenience, tipersist() function also returns a copy of the object’s identi-

fier that it made persistent. We save the returned identifier for each object in a local variable. We
will use these identifiers later in the chapter to perform other database operations on our persis-
tent objects.

After we have persisted our objects, it is time to commit the transaction and make the changes
permanent. Only after theommit() function returns successfully, are we guaranteed that the
objects are made persistent. Continuing with the crash example, if our application terminates after
the commit for whatever reason, the objects’ state in the database will remain intact. In fact, as
we will discover shortly, our application can be restarted and load the original objects from the
database. Note also that a transaction must be committed explicitly witbrthmit() call. If

the transaction object leaves scope without the transaction being explicitly committed or
rolled back, it will automatically be rolled back. This behavior allows you not to worry about
exceptions being thrown within a transaction; if they cross the transaction boundary, the transac-
tion will automatically be rolled back and all the changes made to the database undone.

The final bit of code in our example is tbatch block that handles the database exceptions. We
do this by catching the base ODB except|on (Section 3.14, "ODB Exceptions") and printing the
diagnostics.

Let's now compile|(Section 2.3, "Compiling and Runnjng") and then run our first ODB applica-
tion:

Revision 2.1, November 2012 C++ Object Persistence with ODB 17

2.4 Making Objects Persistent

mysql --user=odb_test --database=o0db_test < person.sq|l
Jdriver --user odb_test --database odb_test

Our first application doesn’t print anything except for error messages so we can't really tell
whether it actually stored the objects’ state in the database. While we will make our application
more entertaining shortly, for now we can userttysql client to examine the database content.

It will also give us a feel for how the objects are stored:

mysq| --user=odb_test --database=odb_test
Welcome to the MySQL monitor.

mysql> select * from person;

B Y B — S +
| id | first | last | age |
B Y B — S +

1	John	Doe	33
2	Jane	Doe	32
3	Joe	Dirt	30

B Y B — S +
3 rows in set (0.00 sec)

mysql> quit

Another way to get more insight into what's going on under the hood, is to trace the SQL state-
ments executed by ODB as a result of each database operation. Here is how we can enable tracin
just for the duration of our transaction:

/I Create a few persistent person objects.
I

{
transaction t (db->begin ());
t.tracer (stderr_tracer);
/I Make objects persistent and save their ids for later use.
J{éhn_id = db->persist (john);
jane_id = db->persist (jane);

joe_id = db->persist (joe);

t.commit ();

18 C++ Object Persistence with ODB Revision 2.1, November 2012

2.5 Querying the Database for Objects

With this modification our application now produces the following output:

INSERT INTO ‘person’ (‘id‘,first’,'last’','age’) VALUES (?,?,?,?
INSERT INTO ‘person’ (‘id‘,first’,'last’,'age’) VALUES (?,?,?,?
INSERT INTO ‘person’ (‘id‘,first’,'last’,'age’) VALUES (?,?,?,?

Note that we see question marks instead of the actual values because ODB uses prepared state
ments and sends the data to the database in binary form. For more information on tracing, refer to
[Section 3.13, "Tracing SQL Statement Execution". In the next section we will see how to access
persistent objects from our application.

2.5 Querying the Database for Objects

So far our application doesn’'t resemble a typical "Hello World" example. It doesn’'t print
anything except for error messages. Let’'s change that and teach our application to say hello to
people from our database. To make it a bit more interesting, let's say hello only to people over
30:

/I driver.cxx
I

int
main (int argc, char* argv[])
{

try

{

/I Create a few persistent person objects.
i

{
=

typedef odb::query<person> query;
typedef odb::result<person> result;

/I Say hello to those over 30.
i

{
transaction t (db->begin ());
result r (db->query<person> (query::age > 30));
for (result::iterator i (r.begin ()); i I=r.end (); ++i)

{

cout << "Hello, " << i->first () << "I" << end];

Revision 2.1, November 2012 C++ Object Persistence with ODB 19

2.5 Querying the Database for Objects

}

t.commit ();

}
}

catch (const odb::exception& e)

{

cerr << e.what () << endl;
return 1;

}
}

The first half of our application is the same as before and is replaced with "..." in the above listing
for brevity. Again, let's examine the rest of it piece by piece.

The twotypedef s create convenient aliases for two template instantiations that will be used a
lot in our application. The first is the query type for ffegson objects and the second is the
result type for that query.

Then we begin a new transaction and call gbery() database function. We pass a query
expressiondquery::age > 30) which limits the returned objects only to those with the age
greater than 30. We also save the result of the query in a local variable.

The next few lines perform a standard for-loop iteration over the result sequence printing hello
for every returned person. Then we commit the transaction and that’s it. Let’'s see what this appli-
cation will print:

mysq| --user=odb_test --database=odb_test < person.sq|l
Jdriver --user odb_test --database odb_test

Hello, John!
Hello, Jane!

That looks about right, but how do we know that the query actually used the database instead of
just using some in-memory artifacts of the earpiersist() calls? One way to test this would

be to comment out the first transaction in our application and re-run it without re-creating the
database schema. This way the objects that were persisted during the previous run will be
returned. Alternatively, we can just re-run the same application without re-creating the schema
and notice that we now show duplicate objects:

Jdriver --user odb_test --database odb_test
Hello, John!
Hello, Jane!

Hello, John!
Hello, Jane!

20 C++ Object Persistence with ODB Revision 2.1, November 2012

2.6 Updating Persistent Objects

What happens here is that the previous run of our application persisted gpaetoof objects

and when we re-run the application, we persist another set with the same names but with different
ids. When we later run the query, matches from both sets are returned. We can change the line
where we print the "Hello" string as follows to illustrate this point:

cout << "Hello, " << i->first () << " (" << i->id () << ")!I" << endl;

If we now re-run this modified program, again without re-creating the database schema, we will
get the following output:

Jdriver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!

The identifiers 3, 6, and 9 that are missing from the above list belong to the "Joe Dirt" objects
which are not selected by this query.

2.6 Updating Persistent Objects

While making objects persistent and then selecting some of them using queries are two useful
operations, most applications will also need to change the object’s state and then make these
changes persistent. Let’s illustrate this by updating Joe’s age who just had a birthday:

/I driver.cxx
I

int
main (int argc, char* argv[])
{

try

{

unsigned long john_id, jane_id, joe_id;

/I Create a few persistent person objects.
i

{

/I Save object ids for later use.

Revision 2.1, November 2012 C++ Object Persistence with ODB 21

2.6 Updating Persistent Objects

I
john_id = john.id ();
jane_id = jane.id ();
joe_id = joe.id ();

}

/I Joe Dirt just had a birthday, so update his age.
I

{
transaction t (db->begin ());

auto_ptr<person> joe (db->load<person> (joe_id));
joe->age (joe->age () + 1);
db->update (*joe);

t.commit ();

}

/I Say hello to those over 30.
I

{

=
}

catch (const odb::exception& e)

{

cerr << e.what () << endl;
return 1;

}
}

The beginning and the end of the new transaction are the same as the previous two. Once within a
transaction, we call thewad() database function to instantiateparson object with Joe’s
persistent state. We pass Joe’s object identifier that we stored earlier when we made this object
persistent. While here we us#d::auto_ptr to manage the returned object, we could have

also used another smart pointer, for exampgkel::unique_ptr from C++11 or
shared_ptr from TR1, C++11, or Boost. For more information on the object lifetime manage-
ment and the smart pointers that we can use for that, see Section 3.3, "Object and View|Pointers".

With the instantiated object in hand we increment the age and calptiate() function to
update the object’s state in the database. Once the transaction is committed, the changes are mac
permanent.

If we now run this application, we will see Joe in the output since he is now over 30:

22 C++ Object Persistence with ODB Revision 2.1, November 2012

2.7 Defining and Using Views

mysql --user=odb_test --database=o0db_test < person.sq|l
Jdriver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!

What if we didn’t have an identifier for Joe? Maybe this object was made persistent in another
run of our application or by another application altogether. Provided that we only have one Joe
Dirt in the database, we can use the query facility to come up with an alternative implementation
of the above transaction:

/I Joe Dirt just had a birthday, so update his age. An
/I alternative implementation without using the object id.
I

{
transaction t (db->begin ());

result r (db->query<person> (query::first == "Joe" &&
query::last == "Dirt"));

result::iterator i (r.begin ());
if (i I=r.end ())
{

auto_ptr<person> joe (i.load ());
joe->age (joe->age () + 1);
db->update (*joe);

}

t.commit ();

}

2.7 Defining and Using Views

Suppose that we need to gather some basic statistics about the people stored in our database
Things like the total head count, as well as the minimum and maximum ages. One way to do it
would be to query the database for all pfleeson objects and then calculate this information as

we iterate over the query result. While this approach may work fine for our database with just
three people in it, it would be very inefficient if we had a large number of objects.

While it may not be conceptually pure from the object-oriented programming point of view, a
relational database can perform some computations much faster and much more economically
than if we performed the same operations ourselves in the application’s process.

Revision 2.1, November 2012 C++ Object Persistence with ODB 23

2.7 Defining and Using Views

To support such cases ODB provides the notion of views. An ODB view is al@ss- that
embodies a light-weight, read-only projection of one or more persistent objects or database tables
or the result of a native SQL query execution.

Some of the common applications of views include loading a subset of data members from
objects or columns database tables, executing and handling results of arbitrary SQL queries,
including aggregate queries, as well as joining multiple objects and/or database tables using
object relationships or custom join conditions.

While you can find a much more detailed description of views in Chapter 9, "Yiews", here is how
we can define theperson_stat view that returns the basic statistics about pleeson
objects:

#pragma db view object(person)
struct person_stat

{
#pragma db column("count(" + person::id_ +")")
std::size_t count;

#pragma db column("min(" + person::age_ +")")
unsigned short min_age;

#pragma db column("max(" + person::age_ +")")
unsigned short max_age;

h

To get the result of a view we use the saumery() function as when querying the database for
an object. Here is how we can load and print our statistics using the view we have just created:

/I Print some statistics about all the people in our database.
I

{
transaction t (db->begin ());

odb::result<person_stat> r (db->query<person_stat> ());
/I The result of this query always has exactly one element.
f:/onst person_stat& ps (*r.begin ());
cout << "count : " << ps.count << end|

<< "min age: " << ps.min_age << endl|

<< "max age: " << ps.max_age << endl;

t.commit ();

}

24 C++ Object Persistence with ODB Revision 2.1, November 2012

2.8 Deleting Persistent Objects

If we now add theperson_stat view to theperson.hxx header, the above transaction to
driver.cxx , as well as re-compile and re-run our example, then we will see the following
additional lines in the output:

count : 3
min age: 31
max age: 33

2.8 Deleting Persistent Objects

The last operation that we will discuss in this chapter is deleting the persistent object from the
database. The following code fragment shows how we can delete an object given its identifier:

/I John Doe is no longer in our database.
i

{
transaction t (db->begin ());

db->erase<person> (john_id);
t.commit ();

}

To delete John from the database we start a transaction, catbtef) database function with
John’s object id, and commit the transaction. After the transaction is committed, the erased object
is no longer persistent.

If we don’t have an object id handy, we can use queries to find and delete the object:

/I John Doe is no longer in our database. An alternative
/I implementation without using the object id.
i

{
transaction t (db->begin ());

result r (db->query<person> (query::first == "John" &&
query::last == "Doe"));

result::iterator i (r.begin ());

if (i'=r.end ())
{

auto_ptr<person> john (i.load ());
db->erase (*john);

}

t.commit ();

}

Revision 2.1, November 2012 C++ Object Persistence with ODB 25

2.9 Summary

2.9 Summary

This chapter presented a very simple application which, nevertheless, exercised all of the core
database functiongersist() , query() , load() , update() , anderase() . We also
saw that writing an application that uses ODB involves the following steps:

1. Declare persistent classes in header files.
2. Compile these headers to generate database support code.
3. Link the application with the generated code and two ODB runtime libraries.

Do not be concerned if, at this point, much appears unclear. The intent of this chapter is to give
you only a general idea of how to persist C++ objects with ODB. We will cover all the details
throughout the remainder of this manual.

26 C++ Object Persistence with ODB Revision 2.1, November 2012

3 Working with Persistent Objects

3 Working with Persistent Objects

The previous chapters gave us a high-level overview of ODB and showed how to use it to store

C++ objects in a database. In this chapter we will examine the ODB object persistence model as
well as the core database APIs in greater detail. We will start with basic concepts and terminol-

ogy in[Section 3|1 and Section [3.3 and continue with the discussion ofibheatabase

class iff Section 3.4, transaction$ in Sectioh 3.5, and connectfons in Segtion 3.6. The remainder of
this chapter deals with the core database operations and concludes with the discussion of ODB
exceptions.

In this chapter we will continue to use and expandpdeson persistent class that we have
developed in the previous chapter.

3.1 Concepts and Terminology

The termdatabasecan refer to three distinct things: a general notion of a place where an applica-
tion stores its data, a software implementation for managing this data (for example MySQL), and,
finally, some database software implementations may manage several data stores which are
usually distinguished by name. This name is also commonly referred to as a database.

In this manual, when we use the walatabasewe refer to the first meaning above, for example,
"The update() function saves the object’s state to the database.” The term Database Manage-
ment System (DBMS) is often used to refer to the second meaning of the word database. In this
manual we will use the teraatabase systefior short, for example, "Database system-indepen-
dent application code." Finally, to distinguish the third meaning from the other two, we will use
the termdatabase nameor example, "The second option specifies the database name that the
application should use to store its data.”

In C++ there is only one notion of a type and an instance of a type. For example, a fundamental
type, such amt |, is, for the most part, treated the same as a user defined class type. However,
when it comes to persistence, we have to place certain restrictions and requirements on certain
C++ types that can be stored in the database. As a result, we divide persistent C++ types into two
groups:object typesandvalue typesAn instance of an object type is called @bjectand an
instance of a value type —value

An object is an independent entity. It can be stored, updated, and deleted in the database indepen
dent of other objects. Normally, an object has an identifier, cabgztt id that is unique among

all instances of an object type within a database. In contrast, a value can only be stored in the
database as part of an object and doesn’t have its own unique identifier.

An object consists of data members which are either values (Chapter 7, "Valug Types"), pointers
to other objectq (Chapter 6, "Relationships"), or containers of values or pointers to other objects
(Chapter 5, "Containers"). Pointers to other objects and containers can be viewed as special kinds

Revision 2.1, November 2012 C++ Object Persistence with ODB 27

3.1 Concepts and Terminology

of values since they also can only be stored in the database as part of an object.

An object type is a C++ class. Because of this one-to-one relationship, we will usehbgzots

type andobject classanterchangeably. In contrast, a value type can be a fundamental C++ type,
such asnt or a class type, such sfl::string . If a value consists of other values, then it is
called acomposite valuand its type — @omposite value typgsection 7.2, "Composite Vallie
[Typest). Otherwise, the value is callgidhple valueand its type — aimple value typgSectioh

[7.1, "Simple Value Typek"). Note that the distinction between simple and composite values is
conceptual rather than representational. For exanspdestring is a simple value type
because conceptually string is a single value even though the representation of the string class
may contain several data members each of which could be considered a value. In fact, the same
value type can be viewed (and mapped) as both simple and composite by different applications.

While not strictly necessary in a purely object-oriented application, practical considerations often
require us to only load a subset of an object’s data members or a combination of members from
several objects. We may also need to factor out some computations to the relational database
instead of performing them in the application’s process. To support such requirements ODB
distinguishes a third kind of C++ types, callgdws (Chapter 9, "Viewsg"). An ODB view is a
C++class that embodies a light-weight, read-only projection of one or more persistent objects
or database tables or the result of a native SQL query execution.

Understanding how all these concepts map to the relational model will hopefully make these
distinctions clearer. In a relational database an object type is mapped to a table and a value type is
mapped to one or more columns. A simple value type is mapped to a single column while a
composite value type is mapped to several columns. An object is stored as a row in this table and
a value is stored as one or more cells in this row. A simple value is stored in a single cell while a
composite value occupies several cells. A view is not a persistent entity and it is not stored in the
database. Rather, it is a data structure that is used to capture a single row of an SQL query result.

Going back to the distinction between simple and composite values, consider a date type which
has three integer members: year, month, and day. In one application it can be considered a
composite value and each member will get its own column in a relational database. In another
application it can be considered a simple value and stored in a single column as a number of days
from some predefined date.

Until now, we have been using the teparsistent clasdo refer to object classes. We will
continue to do so even though a value type can also be a class. The reason for this asymmetry is
the subordinate nature of value types when it comes to database operations. Remember that
values are never stored directly but rather as part of an object that contains them. As a result,
when we say that we want to make a C++ class persistent or persist an instance of a class in the
database, we invariably refer to an object class rather than a value class.

28 C++ Object Persistence with ODB Revision 2.1, November 2012

3.2 Declaring Persistent Objects and Values

Normally, you would use object types to model real-world entities, things that have their own
identity. For example, in the previous chapter we creatpdrson class to model a person,
which is a real-world entity. Name and age, which we used as data memberpensour class

are clearly values. It is hard to think of age 31 or name "Joe" as having their own identities.

A good test to determine whether something is an object or a value, is to consider if other objects
might reference it. A person is clearly an object because it can be referred to by other objects such
as a spouse, an employer, or a bank. On the other hand, a person’s age or name is not somethin
that other objects would normally refer to.

Also, when an object represents a real entity, it is easy to choose a suitable object id. For
example, for a person there is an established notion of an identifier (SSN, student id, passport
number, etc). Another alternative is to use a person’s email address as an identifier.

Note, however, that these are only guidelines. There could be good reasons to make something
that would normally be a value an object. Consider, for example, a database that stores a vast
number of people. Many of thgerson objects in this database have the same names and
surnames and the overhead of storing them in every object may negatively affect the perfor-
mance. In this case, we could make the first name and last name each an object and only store
pointers to these objects in therson class.

An instance of a persistent class can be in one of two st@esientandpersistent A transient
instance only has a representation in the application’s memory and will cease to exist when the
application terminates, unless it is explicitly made persistent. In other words, a transient instance
of a persistent class behaves just like an instance of any ordinary C++ class. A persistent instance
has a representation in both the application’s memory and the database. A persistent instance will
remain even after the application terminates unless and until it is explicitly deleted from the
database.

3.2 Declaring Persistent Objects and Values

To make a C++ class a persistent object class we declare it as such usiiigobject
pragma, for example:

#pragma db object
class person

{
=

The other pragma that we often useallisid which designates one of the data members as an
object id, for example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 29

3.2 Declaring Persistent Objects and Values

#pragma db object
class person

{

#pragma db id
unsigned long id_;

%

The object id can be of a simple or composite (Section 7.2.1, "Composite Object Ids") value type.
This type should be default-constructible. It is also possible to declare a persistent class without
an object id, however, such a class will have limited functionality (Section 12hb.6d"").

The above two pragmas are the minimum required to declare a persistent class with an object id.
Other pragmas can be used to fine-tune the database-related properties of a class and its membel
(Chapter 12, "ODB Pragma Langudge").

Normally, a persistent class should define the default constructor. The generated database suppor
code uses this constructor when instantiating an object from the persistent state. If we add the
default constructor only for the database support code, then we can make it private provided we
also make thedb::access class, defined in theodb/core.hxx> header, a friend of this

object class. For example:

#include <odb/core.hxx>

#pragma db object
class person

{

private:
friend class odb::access;

person () {}
kh

It is also possible to have an object class without the default constructor. However, in this case,
the database operations will only be able to load the persistent state into an existing instance
(Section 3.9, "Loading Persistent Objefts", Section 4.4, "Query Result").

The ODB compiler also needs access to the non-transient (Section 12réidieht ") data
members of a persistent class. The ODB compiler can access such data members directly if they
are public. It can also do so if they are private or protected anddifteaccess class is
declared a friend of the object type. For example:

#include <odb/core.hxx>

#pragma db object
class person

30 C++ Object Persistence with ODB Revision 2.1, November 2012

3.2 Declaring Persistent Objects and Values

private:
friend class odb::access;

person () {}

#pragma db id
unsigned long id_;

std::string name_;

%

If data members are not accessible directly, then the ODB compiler will try to automatically find
suitable accessor and modifier functions. To accomplish this, the ODB compiler will try to
lookup common accessor and modifier names derived from the data member name. Specifically,
for thename__ data member in the above example, the ODB compiler will look for accessor func-
tions with namesget_name() , getName() , getname() , and justname() as well as for
modifier functions with nameset_name() , setName() , sethame() , and justname() .

You can also add support for custom name derivations with-#oeessor-regex and
--modifier-regex ODB compiler options. Refer to the ODB Compiler Command Lline

for details on these options. The following example illustrates automatic accessor and
modifier discovery:

#pragma db object
class person

{
public:

person () {}

unsigned long id () const;
void id (unsigned long);

const std::string& get_name () const;
std::string& set_name ();

private:
#pragma db id
unsigned long id_; // Uses id() for access.

std::string name_; // Uses get_name()/set_name() for access.

3

Finally, if a data member is not directly accessible and the ODB compiler was unable to discover
suitable accessor and modifier functions, then we can provide custom accessor and modifier
expressions using tidb get anddb set pragmas. For more information on custom accessor

Revision 2.1, November 2012 C++ Object Persistence with ODB 31

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

3.3 Object and View Pointers

and modifier expressions refel{ to Section 12.4y6t Tset /access "}

You may be wondering whether we also have to declare value types as persistent. We don’t need
to do anything special for simple value types suclngas or std::string since the ODB
compiler knows how to map them to suitable database types and how to convert between the two.
On the other hand, if a simple value is unknown to the ODB compiler then we will need to
provide the mapping to the database type and, possibly, the code to convert between the two. For
more information on how to achieve this refer to dietype pragma description in_Sectjon
[12.3.1, type "l

Similar to object classes, composite value types have to be explicitly declared as persistent using
thedb value pragma, for example:

#pragma db value
class name

{

std::string first_;
std::string last_;

%

Note that a composite value cannot have a data member designated as an object id since, as w
have discussed earlier, values do not have a notion of identity. A composite value type also
doesn’t have to define the default constructor, unless it is used as an element of a container. The
ODB compiler uses the same mechanisms to access data members in composite value types as i
object types. Composite value types are discussed in more ddtail in Section 7.2, "Cpmposite

alue Typeg".

3.3 Object and View Pointers

As we have seen in the previous chapter, some database operations create dynamically allocatec
instances of persistent classes and return pointers to these instances. As we will see in later chap
ters, pointers are also used to establish relationships between ¢bjects (Chapter 6, "Reldtionships")
as well as to cache persistent objects in a segsion (Chapter 10, "$ession"). While in most cases
you won't need to deal with pointers to views, it is possible to a obtain a dynamically allocated
instance of a view using theesult_iterator::load() function [Section 4.4, "Query

Results]).

By default, all these mechanisms use raw pointers to return objects and views as well as to pass
and cache objects. This is normally sufficient for applications that have simple object lifetime
requirements and do not use sessions or object relationships. In particular, a dynamically allo-
cated object or view that is returned as a raw pointer from a database operation can be assigned t
a smart pointer of our choice, for examdtl::auto_ptr , std::unique_ptr from

C++11, orshared_ptr from TR1, C++11, or Boost.

32 C++ Object Persistence with ODB Revision 2.1, November 2012

3.3 Object and View Pointers

However, to avoid any possibility of a mistake, such as forgetting to use a smart pointer for a
returned object or view, as well as to simplify the use of more advanced ODB functionality, such
as sessions and bidirectional object relationships, it is recommended that you use smart pointers
with the sharing semantics as object pointers. 3hared ptr smart pointer from TR1,
C++11, or Boost is a good default choice. However, if sharing is not required and sessions are not
used, therstd::unique_ptr or std::auto_ptr can be used just as well.

ODB provides several mechanisms for changing the object or view pointer type. To specify the
pointer type on the per object or per view basis we can usdhtipginter pragma, for
example:

#pragma db object pointer(std::trl::shared_ptr)
class person

{
3
We can also specify the default pointer for a group of objects or views at the namespace level:

#pragma db namespace pointer(std::trl::shared_ptr)
namespace accounting

{
#pragma db object

class employee

{
=

#pragma db object
class employer

{

=
}

Finally, we can use thedefault-pointer option to specify the default pointer for the
whole file. Refer to the ODB Compiler Command Line Mahual for details on this option’s argu-
ment. The typical usage is shown below:

--default-pointer std::trl::shared_ptr

An alternative to this method with the same effect is to specify the default pointer for the global
namespace:

#pragma db namespace() pointer(std::trl::shared_ptr)

Revision 2.1, November 2012 C++ Object Persistence with ODB 33

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

3.4 Database

Note that we can always override the default pointer specified at the namespace level or with the
command line option using thid pointer object or view pragma. For example:

#pragma db object pointer(std::shared_ptr)
namespace accounting

{
#pragma db object

class employee

{

3

#pragma db object pointer(std::unique_ptr)
class employer

{

=
}

Refer tof Section 12.1.2pbinter _ (object)},[Section 12.2.4pbinter __ (view)’], and[Sectidn
[12.5.1, pointer (namespace)"” for more information on these mechanisms.

Built-in support that is provided by the ODB runtime library allows us toshseed ptr

(TR1 or C++11)std::unique_ptr (C++11), orstd::auto_ptr as pointer types. Plus,

ODB profile libraries, that are available for commonly used frameworks and libraries (such as
Boost and Qt), provide support for smart pointers found in these frameworks and librarles (Part

1, "Profiles”). It is also easy to add support for our own smart pointers, as descrjbed in] Section
[6.5, "Using Custom Smart Pointgrs".

3.4 Database

Before an application can make use of persistence services offered by ODB, it has to create a
database class instance. A database instance is the representation of the place where the applic:
tion stores its persistent objects. We create a database instance by instantiating one of the
database system-specific classes. For examople, mysqgl::database would be such a

class for the MySQL database system. We will also normally pass a database name as an argu-
ment to the class’ constructor. The following code fragment shows how we can create a database
instance for the MySQL database system:

34 C++ Object Persistence with ODB Revision 2.1, November 2012

3.4 Database

#include <odb/database.hxx>
#include <odb/mysql/database.hxx>

auto_ptr<odb::database> db (
new odb::mysql::database (
"test_user" // database login name
"test_password" // database password
"test_database" // database name

)

The odb::database class is a common interface for all the database system-specific classes
provided by ODB. You would normally work with the database instance via this interface unless
there is a specific functionality that your application depends on and which is only exposed by a
particular system’slatabase class. You will need to include theodb/database.hxx>

header file to make this class available in your application.

The odb::database interface defines functions for starting transactions and manipulating
persistent objects. These are discussed in detail in the remainder of this chapter as well as the nex
chapter which is dedicated to the topic of querying the database for persistent objects. For details
on the system-specifitatabase classes, refer {o Part Il, "Database Systems".

Before we can persist our objects, the corresponding database schema has to be created in th
database. The schema contains table definitions and other relational database artifacts that are
used to store the state of persistent objects in the database.

There are several ways to create the database schema. The easiest is to instruct the ODB compile
to generate the corresponding schema from the persistent claggaserate-schema

option). The ODB compiler can generate the schema as a standalone SQL file, embedded into the
generated C++ code, or as a separate C++ source-fithéma-format option). If we are

using the SQL file to create the database schema, then this file should be executed, normally only
once, before the application is started.

Alternatively, if the schema is embedded directly into the generated code or produced as a sepa-
rate C++ source file, then we can use tikb::schema_catalog class to create it in the
database from within our application, for example:

#include <odb/schema-catalog.hxx>
odb::transaction t (db->begin ());

odb::schema_catalog::create_schema (*db);
t.commit ();

Refer to the next section for information on thab::transaction class. The complete
version of the above code fragment is available insitteema/embedded example in the
odb-examples package.

Revision 2.1, November 2012 C++ Object Persistence with ODB 35

3.5 Transactions

The odb::schema_catalog class has the following interface. You will need to include the
<odb/schema-catalog.hxx> header file to make this class available in your application.

namespace odb

{

class schema_catalog

{

public:

static void

create_schema (database&, const std::string& name = "");

I3
}

The first argument to thereate_schema() function is the database instance that we would

like to create the schema in. The second argument is the schema name. By default, the ODB
compiler generates all embedded schemas with the default schema name (empty string).
However, if your application needs to have several separate schemas, you can use the
--schema-name ODB compiler option to assign custom schema names and then use these
names as a second argument deeate schema() . If the schema is not found,
create_schema() throws theodb::unknown_schema exception. The

create_schema() function should be called within a transaction.

Finally, we can also use a custom database schema with ODB. This approach can work similarly
to the standalone SQL file described above except that the database schema is hand-written or
produced by another program. Or we could execute custom SQL statements that create the
schema directly from our application. To map persistent classes to custom database schemas.
ODB provides a wide range of mapping customization pragmas, suctb table |

db column , anddbtype (Chapter 12, "ODB Pragma Langudgge"). For sample code that
shows how to perform such mapping for various C++ constructs, refer $oltbma/custom

example in th@db-examples package.

3.5 Transactions

A transaction is an atomic, consistent, isolated and durable (ACID) unit of work. Database opera-
tions can only be performed within a transaction and each thread of execution in an application
can have only one active transaction at a time.

By atomicity we mean that when it comes to making changes to the database state within a trans-
action, either all the changes are applied or none at all. Consider, for example, a transaction that
transfers funds between two objects representing bank accounts. If the debit function on the first
object succeeds but the credit function on the second fails, the transaction is rolled back and the
database state of the first object remains unchanged.

36 C++ Object Persistence with ODB Revision 2.1, November 2012

3.5 Transactions

By consistency we mean that a transaction must take all the objects stored in the database from
one consistent state to another. For example, if a bank account object must reference a persor
object as its owner and we forget to set this reference before making the object persistent, the
transaction will be rolled back and the database will remain unchanged.

By isolation we mean that the changes made to the database state during a transaction are only
visible inside this transaction until and unless it is committed. Using the above example with the
bank transfer, the results of the debit operation performed on the first object is not visible to other
transactions until the credit operation is successfully completed and the transaction is committed.

By durability we mean that once the transaction is committed, the changes that it made to the
database state are permanent and will survive failures such as an application crash. From now on
the only way to alter this state is to execute and commit another transaction.

A transaction is started by calling either thadatabase::begin() or connec-
tion::begin() function. The returned transaction handle is stored in an instance of the
odb::transaction class. You will need to include theodb/transaction.hxx>

header file to make this class available in your application. For example:
#include <odb/transaction.hxx>

transaction t (db.begin ()

/I Perform database operations.

t.commit ();

Theodb::transaction class has the following interface:

namespace odb

{

class transaction

{

public:
typedef odb::database database_type;
typedef odb::connection connection_type;

transaction (transaction_impl*, bool make_current = true);

void
reset (transaction_impl*, bool make_current = true);

void
commit ();

void
rollback ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 37

3.5 Transactions

database_type&
database ();

connection_type&
connection ();

static bool
has_current ();

static transaction&
current ();

static void
current (transaction&);

static bool
reset_current ();

h
}

The commit() function commits a transaction amallback() rolls it back. Unless the
transaction has bedmalized that is, explicitly committed or rolled back, the destructor of the
transaction class will automatically roll it back when the transaction instance goes out of
scope. If we try to commit or roll back a finalized transaction, dla::transac-
tion_already_finalized exception is thrown.

The database() accessor returns the database this transaction is working on. Similarly, the
connection() accessor returns the database connection this transaction[is_on (Sectjon 3.6,
['Connectiong").

The staticcurrent() accessor returns the currently active transaction for this thread. If there is
no active transaction, this function throws thgth::not_in_transaction exception. We

can check whether there is a transaction in effect in this thread usif@agheurrent()

static function.

The make_current argument in thetransaction constructor as well as the static
current() modifier andreset_current() function give us additional control over the
nomination of the currently active transaction. If we fatse as themake_current argu-

ment, then the newly created transaction will not automatically be made the active transaction for
this thread. Later, we can use the statioent() modifier to set this transaction as the active
transaction. Theeset_current() static function clears the currently active transaction.
Together, these mechanisms allow for more advanced use cases, such as multiplexing two or
more transactions on the same thread. For example:

38 C++ Object Persistence with ODB Revision 2.1, November 2012

3.5 Transactions

transaction t1 (dbl.begin ()); /I Active transaction.
transaction t2 (db2.begin (), false); // Not active.

/I Perform database operations on db1.
transaction::current (t2); /I Deactivate t1, activate t2.
/I Perform database operations on db2.
transaction::current (t1); /I Switch back to t1.

/I Perform some more database operations on db1.
tl.commit ();

transaction::current (t2); /I Switch to t2.

/I Perform some more database operations on db2.

t2.commit ();

The reset() modifier allows us to reuse the sartransaction instance to complete
several database transactions. Similar to the destroesat() will roll the current transaction

back if it hasn’t been finalized. Here is how we can use this function to commit the current trans-
action and start a new one every time a certain humber of database operations has been
performed:

transaction t (db.begin ());

for (size_ti (0); i < n; ++i)

{

/I Perform a database operation, such as persist an object.

/I Commit the current transaction and start a new one after
/I every 100 operations.

Il

if (i % 100 == 0)

{

t.commit ();
t.reset (db.begin ());

}
}

t.commit ();

Note that in the above discussion of atomicity, consistency, isolation, and durability, all of those
guarantees only apply to the object’s state in the database as opposed to the object’s state in the
application’s memory. It is possible to roll a transaction back but still have changes from this
transaction in the application’s memory. An easy way to avoid this potential inconsistency is to

Revision 2.1, November 2012 C++ Object Persistence with ODB 39

3.5 Transactions

instantiate persistent objects only within the transaction scope. Consider, for example, these two
implementations of the same transaction:

void
update_age (database& db, person& p)

{
transaction t (db.begin ());

p.age (p.age () + 1);
db.update (p);

t.commit ();

}

In the above implementation, if thgpdate() call fails and the transaction is rolled back, the
state of thgperson object in the database and the state of the same object in the application’s
memory will differ. Now consider an alternative implementation which only instantiates the
person object for the duration of the transaction:

void
update_age (database& db, unsigned long id)

{
transaction t (db.begin ());

auto_ptr<person> p (db.load<person> (id));

p.age (p.age () + 1);
db.update (p);

t.commit ();

}

Of course, it may not always be possible to write the application in this style. Oftentimes we need
to access and modify the application’s state of persistent objects out of transactions. In this case it
may make sense to try to roll back the changes made to the application state if the transaction was
rolled back and the database state remains unchanged. One way to do this is to re-load the
object’s state from the database, for example:

void
update_age (database& db, person& p)

{
try
{
transaction t (db.begin ());

p.age (p.age () + 1);
db.update (p);

t.commit ();

}

40 C++ Object Persistence with ODB Revision 2.1, November 2012

3.6 Connections

catch (...)

{
transaction t (db.begin ());

db.load (p.id (), p);
t.commit ();

throw;

}
}

3.6 Connections

The odb::connection class represents a connection to the database. Normally, you wouldn’t
work with connections directly but rather let the ODB runtime obtain and release connections as
needed. However, certain use cases may require obtaining a connection manually. For complete-
ness, this section describes to@nection class and discusses some of its use cases. You may
want to skip this section if you are reading through the manual for the first time.

Similar toodb::database , theodb::connection class is a common interface for all the
database system-specific classes provided by ODB. For details on the system-spao#c
tion classes, refer fo Part I, "Database Systems".

To make theodb::connection class available in your application you will need to include
the <odb/connection.hxx> header file. Thedb::connection class has the following
interface:

namespace odb

{

class connection

{
public:
typedef odb:.database database_type;

transaction
begin () = 0;

unsigned long long
execute (const char* statement);

unsigned long long
execute (const std::string& statement);

unsigned long long
execute (const char* statement, std::size_t length);

database_type&
database ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 41

3.6 Connections

h

typedef details::shared_ptr<connection> connection_ptr;

}

Thebegin() function is used to start a transaction on the connectioneXdmute() func-

tions allow us to execute native database statements on the connection. Their semantics are equiv
alent to thedatabase::execute() functions |(Section 3.12, "Executing Native SQL State-
[ments]) except that they can be legally called outside a transaction. Finaltigtaease()

accessor returns a reference to thé::database instance to which this connection corre-
sponds.

To obtain a connection we call thatabase::connection() function. The connection is
returned a®db::connection_ptr , Which is an implementation-specific smart pointer with

the shared pointer semantics. This, in particular, means that the connection pointer can be copied
and returned from functions. Once the last instana@ohection_ptr pointing to the same
connection is destroyed, the connection is returned taldksbase instance. The following

code fragment shows how we can obtain, use, and release a connection:

using namespace odb::core;

database& db = ...
connection_ptr ¢ (db.connection ());

/I Temporarily disable foreign key constraints.
I
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

/I Start a transaction on this connection.
1
transaction t (c->begin ());

t.commit ();

/I Restore foreign key constraints.

I

c->execute ("SET FOREIGN_KEY_CHECKS =1");

/I When 'c’ goes out of scope, the connection is returned to 'db’.

Some of the use cases which may require direct manipulation of connections include out-of-trans-
action statement execution, such as the execution of connection configuration statements, the
implementation of a connection-per-thread policy, and making sure that a set of transactions is
executed on the same connection.

42 C++ Object Persistence with ODB Revision 2.1, November 2012

3.7 Error Handling and Recovery

3.7 Error Handling and Recovery

ODB uses C++ exceptions to report database operation errors. Most ODB exception$iargnify
errors or errors that cannot be corrected without some intervention from the application. For
example, if we try to load an object with an unknown object id, the
odb::object_not_persistent exception is thrown. Our application may be able to
correct this error, for instance, by obtaining a valid object id and trying again. The hard errors and
corresponding ODB exceptions that can be thrown by each database function are described in the
remainder of this chapter with Section 3.14, "ODB Exceptjons" providing a quick reference for
all the ODB exceptions.

The second group of ODB exceptions sigrabft or recoverableerrors. Such errors are tempo-
rary failures which normally can be corrected by simply re-executing the transaction. ODB

defines three such exceptionsodb::connection_lost , odb:timeout , and
odb::deadlock . All recoverable ODB exceptions are derived from the common
odb::recoverable base exception which can be used to handle all the recoverable condi-

tions with a singleatch block.

The odb::connection_lost exception is thrown if a connection to the database is lost in
the middle of a transaction. In this situation the transaction is aborted but it can be re-tried
without any changes. Similarly, tleelb::timeout exception is thrown if one of the database
operations or the whole transaction has timed out. Again, in this case the transaction is aborted
but can be re-tried as is.

If two or more transactions access or modify more than one object and are executed concurrently
by different applications or by different threads within the same application, then it is possible
that these transactions will try to access objects in an incompatible order and deadlock. The
canonical example of a deadlock are two transactions in which the first has motjéetl

and is waiting for the second transaction to commit its changelsjeéot2 so that it can also
updateobject2 . At the same time the second transaction has moddigdct2 and is

waiting for the first transaction to commit its changesobjectl because it also needs to
modify objectl . As a result, none of the two transactions can be completed.

The database system detects such situations and automatically aborts the waiting operation in one
of the deadlocked transactions. In ODB this translates tadhedeadlock recoverable
exception being thrown from one of the database functions.

The following code fragment shows how to handle the recoverable exceptions by restarting the
affected transaction:

const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 43

3.8 Making Objects Persistent

try
{
transaction t (db.begin ());

t.commit ();
break;

}

catch (const odb::recoverable& e)
{
if (retry_count > max_retries)
throw retry_limit_exceeded (e.what ());
else
continue;
}
}

3.8 Making Objects Persistent

A newly created instance of a persistent class is transient. We use the
database::persist() function template to make a transient instance persistent. This func-
tion has four overloaded versions with the following signatures:

template <typename T>
typename object_traits<T>::id_type
persist (const T& object);

template <typename T>
typename object_traits<T>::id_type
persist (const object_traits<T>::const_pointer_type& object);

template <typename T>
typename object_traits<T>::id_type
persist (T& object);

template <typename T>
typename object_traits<T>::id_type
persist (const object_traits<T>::pointer_type& object);

Here and in the rest of the manuabbject traits<T>:pointer_type and
object_traits<T>::const_pointer_type denote the unrestricted and constant object
pointer types [(Section 3.3, "Object and View Poinjers"), respectively. Similarly,
object_traits<T>::id_type denotes the object id type. Tbdb::object_traits

template is part of the database support code generated by the ODB compiler.

44 C++ Object Persistence with ODB Revision 2.1, November 2012

3.9 Loading Persistent Objects

The firstpersist() function expects a constant reference to an instance being persisted. The
second function expects a constant object pointer. Both of these functions can only be used on
objects with application-assigned object [ds (Section 12.420"").

The second and thingersist() functions are similar to the first two except that they operate

on unrestricted references and object pointers. If the identifier of the object being persisted is
assigned by the database, these functions update the id member of the passed instance with th
assigned value. All four functions return the object id of the newly persisted object.

If the database already contains an object of this type with this identifigretsist() func-

tions throw theodb::object_already_persistent exception. This should never happen

for database-assigned object ids as long as the number of objects persisted does not exceed th
value space of the id type.

When calling thepersist() functions, we don’t need to explicitly specify the template type
since it will be automatically deduced from the argument being passed. The following example
shows how we can call these functions:

person john ("John", "Doe", 33);
shared_ptr<person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long jane_id (db.persist (jane));

t.commit ();

cerr << "Jane’s id: " << jane_id << endl;

Notice that in the above code fragment we have created instances that we were planning to make
persistent before starting the transaction. Likewise, we printed Jane’s id after we have committed
the transaction. As a general rule, you should avoid performing operations within the transaction
scope that can be performed before the transaction starts or after it terminates. An active transac-
tion consumes both your application’s resources, such as a database connection, as well as the
database server’s resources, such as object locks. By following the above rule you make sure
these resources are released and made available to other threads in your application and to othe
applications as soon as possible.

3.9 Loading Persistent Objects
Once an object is made persistent, and you know its object id, it can be loaded by the application

using thedatabase::load() function template. This function has two overloaded versions
with the following signatures:

Revision 2.1, November 2012 C++ Object Persistence with ODB 45

3.9 Loading Persistent Objects

template <typename T>
typename object_traits<T>::pointer_type
load (const typename object_traits<T>::id_type& id);

template <typename T>
void
load (const typename object_traits<T>::id_type& id, T& object);

Given an object id, the first function allocates a new instance of the object class in the dynamic
memory, loads its state from the database, and returns the pointer to the new instance. The secon
function loads the object's state into an existing instance. Both functions throw
odb::object_not_persistent if there is no object of this type with this id in the
database.

When we call the firsibad() function, we need to explicitly specify the object type. We don’t
need to do this for the second function because the object type will be automatically deduced
from the second argument, for example:

transaction t (db.begin ());

auto_ptr<person> jane (db.load<person> (jane_id));
db.load (jane_id, *jane);

t.commit ();

In certain situations it may be necessary to reload the state of an object from the database. While
this is easy to achieve using the secotwhd() function, ODB provides the
database::reload() function template that has a number of special properties. This func-
tion has two overloaded versions with the following signatures:

template <typename T>
void
reload (T& object);

template <typename T>
void
reload (const object_traits<T>::pointer_type& object);

The firstreload() function expects an object reference, while the second expects an object
pointer. Both functions expect the id member in the passed object to contain a valid object identi-
fier and, similar tdoad() , both will throwodb::object_not_persistent if there is no

object of this type with this id in the database.

The first special property akload() @ compared to théoad() function is that it does not
interact with the session’s object caghe (Section 10.1, "Object Cache"). That is, if the object being
reloaded is already in the cache, then it will remain there iaflead() returns. Similarly, if

46 C++ Object Persistence with ODB Revision 2.1, November 2012

3.10 Updating Persistent Objects

the object is not in the cache, thetoad() won’t put it there either.

The second special property of ttedoad() function only manifests itself when operating on

an object with the optimistic concurrency model. In this case, if the states of the object in the
application memory and in the database are the same, then no reloading will occur. For more
information on optimistic concurrency, refelf to Chapter 11, "Optimistic Concurfency".

If we don’t know for sure whether an object with a given id is persistent, we can tdsel(he
function instead ofoad() , for example:

template <typename T>
typename object_traits<T>::pointer_type
find (const typename object_traits<T>::id_type& id);

template <typename T>
bool
find (const typename object_traits<T>::id_type& id, T& object);

If an object with this id is not found in the database, thefimg{) function returns &NULL
pointer while the second function leaves the passed instance unmodified andfaétarns

If we don’'t know the object id, then we can use queries to find the object (or objects) matching
some criteriaf (Chapter 4, "Querying the Databhase"). Note, however, that loading an object’s state
using its identifier can be significantly faster than executing a query.

3.10 Updating Persistent Objects

If a persistent object has been modified, we can store the updated state in the database using th
database::update() function template. This function has three overloaded versions with
the following signatures:

template <typename T>
void
update (const T& object);

template <typename T>
void
update (const object_traits<T>::const_pointer_type& object);

template <typename T>
void
update (const object_traits<T>::pointer_type& object);

The firstupdate() function expects an object reference, while the other two expect object
pointers. If the object passed to one of these functions does not exist in the dajadee€)

throws theodb::object_not_persistent exception (but see a note on optimistic concur-
rency below).

Revision 2.1, November 2012 C++ Object Persistence with ODB 47

3.10 Updating Persistent Objects

Below is an example of the funds transfer that we talked about in the earlier section on transac-
tions. It uses the hypothetidadnk account persistent class:
void
transfer (database& db,
unsigned long from_acc,

unsigned long to_acc,
unsigned int amount)

{
bank_account from, to;
transaction t (db.begin ());

db.load (from_acc, from);

if (from.balance () < amount)
throw insufficient_funds ();

db.load (to_acc, to);

to.balance (to.balance () + amount);
from.balance (from.balance () - amount);

db.update (to);
db.update (from);

t.commit ();

}

The same can be accomplished using dynamically allocated objects adiside() function
with object pointer argument, for example:

transaction t (db.begin ());
shared_ptr<bank account> from (db.load<bank_account> (from_acc));

if (from->balance () < amount)
throw insufficient_funds ();

shared_ptr<bank_ account> to (db.load<bank_ account> (to_acc));

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();

48 C++ Object Persistence with ODB Revision 2.1, November 2012

3.11 Deleting Persistent Objects

If any of theupdate() functions are operating on a persistent class with the optimistic concur-

rency model, then they will throw thedb::object _changed exception if the state of the
object in the database has changed since it was last loaded into the application memory. Further-
more, for such classespdate() no longer throws thebject_not_persistent excep-

tion if there is no such object in the database. Instead, this condition is treated as a change of
object state andbject_changed is thrown instead. For a more detailed discussion of opti-
mistic concurrency, refer o Chapter 11, "Optimistic Concurréncy".

In ODB, persistent classes, composite value types, as well as individual data members can be
declared read-only (sde Section 12.1#atlonly (object)],[Section 12.3.6,réadonly |
[(composite value)”, and Section 12.4.72dtonly (data member)").

If an individual data member is declared read-only, then any changes to this member will be
ignored when updating the database state of an object using any of theupatef) func-

tions. A const data member is automatically treated as read-only. If a composite value is
declared read-only then all its data members are treated as read-only.

If the whole object is declared read-only then the database state of this object cannot be changed.
Calling any of the abovapdate() functions for such an object will result in a compile-time
error.

3.11 Deleting Persistent Objects

To delete a persistent object’s state from the database we udatalbase::erase() or
database:.erase_query() function templates. If the application still has an instance of
the erased object, this instance becomes transientefBise() function has the following
overloaded versions:

template <typename T>
void
erase (const T& object);

template <typename T>
void
erase (const object_traits<T>::const_pointer_typeé& object);

template <typename T>
void
erase (const object_traits<T>::pointer_type& object);

template <typename T>

void
erase (const typename object_traits<T>::id_type& id);

Revision 2.1, November 2012 C++ Object Persistence with ODB 49

3.11 Deleting Persistent Objects

The firsterase() function uses an object itself, in the form of an object reference, to delete its
state from the database. The next two functions accomplish the same result but using object
pointers. Note that all three functions leave the passed object unchanged. It simply becomes tran-
sient. The last function uses the object id to identify the object to be deleted. If the object does not
exist in the database, then all four functions throw dtib::object_not_persistent

exception (but see a note on optimistic concurrency below).

We have to specify the object type when calling thedesste() function. The same is unnec-
essary for the first three functions because the object type will be automatically deduced from
their arguments. The following example shows how we can call these functions:

person& john = ...
shared_ptr<jane> jane = ...
unsigned long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase<person> (joe_id);

t.commit ();

If any of theerase() functions except the last one are operating on a persistent class with the
optimistic concurrency model, then they will throw thab::object_changed exception if

the state of the object in the database has changed since it was last loaded into the application
memory. Furthermore, for such classesgrase() no longer throws the
object_not_persistent exception if there is no such object in the database. Instead, this
condition is treated as a change of object stateobjett changed is thrown instead. For a

more detailed discussion of optimistic concurrency, refdr to Chapter 11, "Optimistic Concur-

frencyt.

Theerase_query() function allows us to delete the state of multiple objects matching certain
criteria. It uses the query expression of tietabase::query() function
['Querying the Databage") and, because the ODB query facility is optional, it is only available if
the --generate-query ODB compiler option was specified. Teease_query() func-

tion has the following overloaded versions:

template <typename T>
unsigned long long
erase_query ();

template <typename T>

unsigned long long
erase_query (const odb::query<T>&);

50 C++ Object Persistence with ODB Revision 2.1, November 2012

3.12 Executing Native SQL Statements

The firsterase_query() function is used to delete the state of all the persistent objects of a
given type stored in the database. The second function uses the passed query instance to only
delete the state of objects matching the query criteria. Both functions return the number of objects
erased. When calling therase_query() function, we have to explicitly specify the object

type we are erasing. For example:

typedef odb::query<person> query;

transaction t (db.begin ());

db.erase_query<person> (query::last == "Doe" && query::age < 30);
t.commit ();

Unlike thequery() function, when callingerase_query() we cannot use members from
pointed-to objects in the query expression. However, we can still use a member corresponding to
a pointer as an ordinary object member that has the id type of the pointed-to[object (Chapter 6,
['Relationshipg"). This allows us to compare object ids as well as test the poirtiéflfarAs an
example, the following transaction makes sure that alethployee objects that reference an
employer object that is about to be deleted are deleted as well. Here we assume that the
employee class contains a pointer to temployer class. Refer tp Chapter 6, "RelationsHips"

for complete definitions of these classes.

typedef odb::query<employee> query;
transaction t (db.begin ());
employer& e = ... // Employer object to be deleted.

db.erase_query<employee> (query::employer == e.id ());
db.erase (e);

t.commit ();

3.12 Executing Native SQL Statements

In some situations we may need to execute native SQL statements instead of using the
object-oriented database API described above. For example, we may want to tune the database
schema generated by the ODB compiler or take advantage of a feature that is specific to the
database system we are using. @hatabase::execute() function, which has three over-
loaded versions, provides this functionality:

Revision 2.1, November 2012 C++ Object Persistence with ODB 51

3.13 Tracing SQL Statement Execution

unsigned long long
execute (const char* statement);

unsigned long long
execute (const std::string& statement);

unsigned long long
execute (const char* statement, std::size_t length)

The firstexecute() function expects the SQL statement as a zero-terminated C-string. The last
version expects the explicit statement length as the second argument and the statement itself may
contain\O’ characters, for example, to represent binary data, if the database system supports it.
All three functions return the number of rows that were affected by the statement. For example:

transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();

While these functions must always be called within a transaction, it may be necessary to execute
a native statement outside a transaction. This can be done usingcotitec-
tion::execute() functions as described|in Section 3.6, "Connectjons".

3.13 Tracing SQL Statement Execution

Oftentimes it is useful to understand what SQL statements are executed as a result of high-level
database operations. For example, we can use this information to figure out why certain transac-
tions don’t produce desired results or why they take longer than expected.

While this information can usually be obtained from the database logs, ODB provides an applica-
tion-side SQL statement tracing support that is both more convenient and finer-grained. For
example, in a typical situation that calls for tracing we would like to see the SQL statements
executed as a result of a specific transaction. While it may be difficult to extract such a subset of
statements from the database logs, it is easy to achieve with ODB tracing support:

transaction t (db.begin ());
t.tracer (stderr_tracer);

t.commit ();

52 C++ Object Persistence with ODB Revision 2.1, November 2012

3.13 Tracing SQL Statement Execution

ODB allows us to specify a tracer on the database, connection, and transaction levels. If specified
for the database, then all the statements executed on this database will be traced. On the othe
hand, if a tracer is specified for the connection, then only the SQL statements executed on this
connection will be traced. Similarly, a tracer specified for a transaction will only show statements
that are executed as part of this transaction. All three classeéls:.database |,
odb::connection , andodb::transaction) provide the identical tracing API:

void
tracer (odb::tracer&);

void
tracer (odb::tracer*®);

odb::tracer*
tracer () const;

The first twotracer() functions allow us to set the tracer object with the second one allowing
us to clear the current tracer by passingli_L pointer. The lastracer() function allows us

to get the current tracer object. It returnN@dLL pointer if there is no tracer in effect. Note that

the tracing API does not manage the lifetime of the tracer object. The tracer should be valid for as
long as it is being used. Furthermore, the tracing API is not thread-safe. Trying to set a tracer
from multiple threads simultaneously will result in undefined behavior.

The odb::tracer class defines a callback interface that can be used to create custom tracer
implementations. Thedb::stderr_tracer is a built-in tracer implementation provided by
the ODB runtime. It prints each executed SQL statement to the standard error stream.

The odb::tracer class is defined in theodb/tracer.hxx> header file which you will
need to include in order to make this class available in your applicationodbhgracer
interface provided the following callback functions:

namespace odb

{

class tracer

{
public:
virtual void
prepare (connection&, const statement&);

virtual void
execute (connection&, const statement&);

virtual void
execute (connection&, const char* statement) = 0;

Revision 2.1, November 2012 C++ Object Persistence with ODB 53

3.13 Tracing SQL Statement Execution

virtual void
deallocate (connection&, const statement&);
2
}
The prepare() and deallocate() functions are called when a prepared statement is

created and destroyed, respectively. The &sstcute() function is called when a prepared
statement is executed while the second one is called when a normal statement is executed. The
default implementations for therepare() = anddeallocate() functions do nothing while

the firstexecute() function calls the second one passing the statement text as the second argu-
ment. As a result, if all you are interested in are the SQL statements being executed, then you
only need to override the secoexkcute() function.

In addition to the commorodb::tracer interface, each database runtime provides a
database-specific version adb::<database>::tracer . It has exactly the same interface
as the common version except that tleennection and statement types are
database-specific, which gives us access to additional, database-specific information.

As an example, consider a more elaborate, PostgreSQL-specific tracer implementation. Here we
rely on the fact that the PostgreSQL ODB runtime uses names to identify prepared statements and
this information can be obtained from theb::pgsql::statement object:

#include <odb/pgsql/tracer.hxx>
#include <odb/pgsgl/database.hxx>
#include <odb/pgsqgl/connection.hxx>
#include <odb/pgsgl/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer

virtual void
prepare (odb::pgsqgl::connection& c, const odb::pgsqgl::statement& s)

{
cerr << c.database ().db () << ": PREPARE " << s.name ()

<<"AS " << s.text () << endl;

}

virtual void
execute (odb::pgsql::connection& c, const odb::pgsql::statement& s)

{

cerr << c.database ().db () << ": EXECUTE " << s.name () << endl;

}

virtual void
execute (odb::pgsql::connection& c, const char* statement)

{

cerr << c.database ().db () << ": " << statement << endl;

}

54 C++ Object Persistence with ODB Revision 2.1, November 2012

3.14 ODB Exceptions

virtual void
deallocate (odb::pgsql::connection& c, const odb::pgsqgl::statement& s)

{
cerr << c.database ().db () << ": DEALLOCATE " << s.name () << endl;

}
h

Note also that you can only set a database-specific tracer object using a database-specific
database instance, for example:

pgsql_tracer tracer;

odb::database& db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database& db = ...;
db.tracer (tracer); // Ok.

3.14 ODB Exceptions

In the previous sections we have already mentioned some of the exceptions that can be thrown by
the database functions. In this section we will discuss the ODB exception hierarchy and document
all the exceptions that can be thrown by the common ODB runtime.

The root of the ODB exception hierarchy is the abstoalt:exception class. This class
derives fronmstd::exception and has the following interface:
namespace odb
{
struct exception: std::exception
{

virtual const char*
what () const throw () = 0;

I3
}

Catching this exception guarantees that we will catch all the exceptions thrown by ODB. The
what() function returns a human-readable description of the condition that triggered the excep-
tion.

The concrete exceptions that can be thrown by ODB are presented in the following listing:

namespace odb

{

struct null_pointer: exception

{

virtual const char*
what () const throw ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 55

3.14 ODB Exceptions

h

/I Transaction exceptions.

I

struct already_in_transaction: exception
{

virtual const char*

what () const throw ();

I3

struct not_in_transaction: exception

{

virtual const char*
what () const throw ();

I3

struct transaction_already_finalized: exception

{

virtual const char*
what () const throw ();

I3

/I Session exceptions.
I
struct already_in_session: exception

{

virtual const char*
what () const throw ();

I3

struct not_in_session: exception

{

virtual const char*
what () const throw ();

I3

struct session_required: exception

{

virtual const char*
what () const throw ();

I3

/I Database operations exceptions.
I
struct recoverable: exception

{
h

struct connection_lost: recoverable

{

virtual const char*

56 C++ Object Persistence with ODB

Revision 2.1, November 2012

what () const throw ();

I3

struct timeout: recoverable

{

virtual const char*
what () const throw ();

I3

struct deadlock: recoverable

{

virtual const char*
what () const throw ();

I3

struct object_not_persistent: exception

{

virtual const char*
what () const throw ();

I3

struct object_already_persistent: exception

{

virtual const char*
what () const throw ();

I3

struct object_changed: exception

{

virtual const char*
what () const throw ();

I3

struct result_not_cached: exception

{

virtual const char*
what () const throw ();

I3

struct database_exception: exception

{
h

/I Polymorphism support exceptions.
I
struct abstract_class: exception

{

virtual const char*
what () const throw ();

I3

Revision 2.1, November 2012 C++ Object Persistence with ODB

3.14 ODB Exceptions

57

3.14 ODB Exceptions

struct no_type_info: exception
{

virtual const char*

what () const throw ();

I3

/I Schema catalog exceptions.
I
struct unknown_schema: exception
{
const std::string&
name () const;

virtual const char*
what () const throw ();

I3

}
The null_pointer exception is thrown when a pointer to a persistent object declared
nonNULL with the db not_null or db value_not_null pragma has th&ULL value.

Sed Chapter 6, "Relationships" for details.

The next three exceptionsalfeady in_transaction , hot_in_transaction ,
transaction_already_finalized) are thrown by thedb::transaction class and
are discussed |n Section 3.5, "Transactions".

The next two exceptionslfeady in_session , andnot_in_session) are thrown by
theodb::session class and are discussed in Chapter 10, "Segsion".

Thesession_required exception is thrown when ODB detects that correctly loading a bidi-
rectional object relationship requires a session but one is not us¢d. See Section 6.2, "Bid|rectional
[Relationshipg" for more information on this exception.

The recoverable exception serves as a common base for all the recoverable exceptions,
which are: connection_lost , timeout , and deadlock . The connection_lost

exception is thrown when a connection to the database is lost. Similarynéwoait exception

is thrown if one of the database operations or the whole transaction has timed algadhe

lock exception is thrown when a transaction deadlock is detected by the database system. These
exceptions can be thrown by any database functior]. See Section 3.7, "Error Handling arjd Recov-

for details.

The object_already persistent exception is thrown by theersist() database
function. Se¢ Section 3.8, "Making Objects Persigtent"” for details.

58 C++ Object Persistence with ODB Revision 2.1, November 2012

3.14 ODB Exceptions

The object_not_persistent exception is thrown by théoad() , update() , and
erase() database functions. Refer[to Section 3.9, "Loading Persistent OQfjects”, Sectign 3.10,
['Updating Persistent Objects”, and Section 3.11, "Deleting Persistent Qbjects" for more informa-
tion.

The object_changed exception is thrown by thepdate() database function and certain
erase() database functions when operating on objects with the optimistic concurrency model.
Sed Chapter 11, "Optimistic Concurrency" for details.

Theresult_not_cached exception is thrown by the query result class. Refer to Sectign 4.4,
['Query Resulf" for details.

The database_exception exception is a base class for all database system-specific excep-
tions that are thrown by the database system-specific runtime library. Refer to Part Il, "Database

Systemq" for more information.

The abstract_class exception is thrown by the database functions when we attempt to
persist, update, load, or erase an instance of a polymorphic abstract class. For more information
on abstract classes, refef to Section 12. Al3sttact "}

Theno_type info exception is thrown by the database functions when we attempt to persist,
update, load, or erase an instance of a polymorphic class for which no type information is present
in the application. This normally means that the generated database support code for this class ha:s
not been linked (or dynamically loaded) into the application or the discriminator value has not
been mapped to a persistent class. For more information on polymorphism support, refer to
[Section 8.2, "Polymorphism Inheritange".

The unknown_schema exception is thrown by thedb::schema_catalog class if a
schema with the specified name is not found. Refer to Section 3.4, "Dalabase" for details.

The odb::exception class is defined in theodb/exception.hxx> header file. All the
concrete ODB exceptions are defined 4odb/exceptions.hxx> which also includes
<odb/exception.hxx> . Normally you don’t need to include either of these two headers
because they are automatically included<mglb/database.hxx> . However, if the source
file that handles ODB exceptions does not incladdb/database.hxx> , then you will need

to explicitly include one of these headers.

Revision 2.1, November 2012 C++ Object Persistence with ODB 59

4 Querying the Database

4 Querying the Database

If we don’t know the identifiers of the objects that we are looking for, we can use queries to
search the database for objects matching certain criteria. The ODB query facility is optional and
we need to explicitly request the generation of the necessary database support code with the
--generate-query ODB compiler option.

ODB provides a flexible query API that offers two distinct levels of abstraction from the database
system query language such as SQL. At the high level we are presented with an easy to use ye!
powerful object-oriented query language, called ODB Query Language. This query language is
modeled after and is integrated into C++ allowing us to write expressive and safe queries that
look and feel like ordinary C++. We have already seen examples of these queries in the introduc-
tory chapters. Below is another, more interesting, example:

typedef odb::query<person> query;
typedef odb::result<person> result;

unsigned short age;
query g (query::first == "John" && query::age < query::_ref (age));

for (age = 10; age < 100; age += 10)
{

result r (db.query<person> (q));
}

At the low level, queries can be written as predicates using the database system-native query
language such as tM¢HERPpredicate from the SQBELECT statement. This language will be
referred to as native query language. At this level ODB still takes care of converting query
parameters from C++ to the database system format. Below is the re-implementation of the above
example using SQL as the native query language:

query g ("first = "John’ AND age =" + query::_ref (age));

Note that at this level we lose the static typing of query expressions. For example, if we wrote
something like this:

query g (query::first == 123 && query::agee < query::_ref (age));

We would get two errors during the C++ compilation. The first would indicate that we cannot
compare query::first to an integer and the second would pick the misspelling in
guery::agee . On the other hand, if we wrote something like this:

60 C++ Object Persistence with ODB Revision 2.1, November 2012

4.1 ODB Query Language

query g ("first = 123 AND agee =" + query::_ref (age));
It would compile fine and would trigger an error only when executed by the database system.

We can also combine the two query languages in a single query, for example:

query q ("first = "John™ + (query::age < query::_ref (age)));

4.1 ODB Query Language

An ODB query is an expression that tells the database system whether any given object matches
the desired criteria. As such, a query expression always evaluaies asor false . At the

higher level, an expression consists of other expressions combined with logical operators such as
&&(AND), || (OR), and (NOT). For example:

typedef odb::query<person> query;
query g (query::first == "John" || query::age == 31);

At the core of every query expression lie simple expressions which involve one or more object
members, values, or parameters. To refer to an object member we use an expression such a:
query::first above. The names of members induery class are derived from the names

of data members in the object class by removing the common member name decorations, such as
leading and trailing underscores, the prefix, etc.

In a simple expression an object member can be compared to a value, parameter, or another

member using a number of predefined operators and functions. The following table gives an
overview of the available expressions:

Revision 2.1, November 2012 C++ Object Persistence with ODB 61

4.1 ODB Query Language

Operator Description Example

== equal query::age == 31

I= unequal query::age != 31

< less than query::age < 31

> greater than query::age > 31

<= less than or equal query::age <= 31

>= greater than or equal | query::age >= 31

in() one of the values query::age.in (30, 32, 34)
in_range() (r);::gc;f the values in gl;g)ry::age.in_range (begin,
is_null() value is NULL query::age.is_null ()
is_not_null() value is not NULL query::age.is_not_null ()
Thein() function accepts a maximum of five arguments. Useirtheange() function if

you need to compare to more than five values. This function accepts a pair of standard C++ itera-
tors and compares to all the values fromligin position inclusive and until and excluding the
end position. The following code fragment shows how we can use these functions:

std::vector<string> names;

names.push_back ("John");
names.push_back ("Jack™);
names.push_back ("Jane");

qguery gl (query::first.in ("John", "Jack", "Jane"));
guery g2 (query::first.in_range (names.begin (), names.end ()));

The operator precedence in the query expressions are the same as for equivalent C++ operators
We can use parentheses to make sure the expression is evaluated in the desired order. Fo
example:

qguery g ((query::first == "John" || query::first == "Jane") &&
query::age < 31);

62 C++ Object Persistence with ODB Revision 2.1, November 2012

4.2 Parameter Binding

4.2 Parameter Binding

An instance of thedb::query class encapsulates two parts of information about the query:
the query expression and the query parameters. Parameters can be bound to C++ variables eithe
by value or by reference.

If a parameter is bound by value, then the value for this parameter is copied from the C++ vari-
able to the query instance at the query construction time. On the other hand, if a parameter is
bound by reference, then the query instance stores a reference to the bound variable. The actua
value of the parameter is only extracted at the query execution time. Consider, for example, the
following two queries:

string name ("John");

query gl (query::first == query::_val (name));
query g2 (query::first == query::_ref (name));

name = "Jane";

db.query<person> (ql); // Find John.
db.query<person> (g2); // Find Jane.

Theodb::query class provides two special functionsal() and_ref() , that allow us to

bind the parameter either by value or by reference, respectively. In the ODB query language, if
the binding is not specified explicitly, the value semantic is used by default. In the native query
language, binding must always be specified explicitly. For example:

query gl (query::age < age); /I By value.
query g2 (query::age < query::_val (age)); // By value.
query g3 (query::age < query::_ref (age)); // By reference.

query g4 ("age <" + age); Il Error.
query g5 ("age <" + query::_val (age)); // By value.
query g6 ("age <" + query::_ref (age)); // By reference.

A query that only has by-value parameters does not depend on any other variables and is
self-sufficient once constructed. A query that has one or more by-reference parameters depends
on the bound variables until the query is executed. If one such variable goes out of scope and we
execute the query, the behavior is undefined.

4.3 Executing a Query

Once we have the query instance ready and by-reference parameters initialized, we can execute
the query using thdatabase::query() function template. It has two overloaded versions:

Revision 2.1, November 2012 C++ Object Persistence with ODB 63

4.3 Executing a Query

template <typename T>
result<T>
query (bool cache = true);

template <typename T>
result<T>
query (const odb::query<T>&, bool cache = true);

The firstquery() function is used to return all the persistent objects of a given type stored in
the database. The second function uses the passed query instance to only return objects matchin
the query criteria. Theache argument determines whether the objects’ states should be cached

in the application’s memory or if they should be returned by the database system one by one as
the iteration over the result progresses. The result caching is discussed in detail in the next
section.

When calling thequery() function, we have to explicitly specify the object type we are query-
ing. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

result all (db.query<person> ());
result johns (db.query<person> (query::first == "John"));

Note that it is not required to explicitly create a named query variable before executing it. For
example, the following two queries are equivalent:

query g (query::first == "John");

result r1 (db.query<person> (q));
result r1 (db.query<person> (query::first == "John"));

Normally, we would create a named query instance if we are planning to run the same query
multiple times and would use the in-line version for those that are executed only once. A named
guery instance that does not have any by-reference parameters is immutable and can be share
between multiple threads without synchronization. On the other hand, a query instance with
by-reference parameters is modified every time it is executed. If such a query is shared among
multiple threads, then access to this query instance must be synchronized from the execution
point and until the completion of the iteration over the result.

It is also possible to create queries from other queries by combining them using logical operators.
For example:

64 C++ Object Persistence with ODB Revision 2.1, November 2012

4.4 Query Result

result
find_minors (database& db, const query& name_query)

{

return db.query<person> (name_query && query::age < 18);

}

result r (find_minors (db, query::first == "John"));

4.4 Query Result

The result of executing a query is zero, one, or more objects matching the query criteria. The
result is returned as an instance ofddé::result class template, for example:

typedef odb::query<person> query;
typedef odb::result<person> result;

result johns (db.query<person> (query::first == "John"));

It is best to view an instance otlb::result as a handle to a stream, such as a file stream.
While we can make a copy of a result or assign one result to another, the two instances will refer
to the same result stream. Advancing the current position in one instance will also advance it in
another. The result instance is only usable within the transaction it was created in. Trying to
manipulate the result after the transaction has terminated leads to undefined behavior.

Theodb::result class template conforms to the standard C++ sequence requirements and has
the following interface:

namespace odb

{

template <typename T>
class result

{
public:
typedef odb::result_iterator<T> iterator;

public:
result ();

result (const result&);

result&
operator= (const result&);

void
swap (result&)

public:

iterator
begin ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 65

4.4 Query Result

iterator
end ();

public:
void
cache ();

bool
empty () const;

std::size t
size () const;
3
}

The default constructor creates an empty result setcdtiee() function caches the returned
objects’ state in the application’s memory. We have already mentioned result caching when we
talked about query execution. As you may rememberdttabase::query() function
caches the result unless instructed not to by the callercadiee() function allows us to cache

the result at a later stage if it wasn’t already cached during query execution.

If the result is cached, the database state of all the returned objects is stored in the application’s
memory. Note that the actual objects are still only instantiated on demand during result iteration.
It is the raw database state that is cached in memory. In contrast, for uncached results the object’s
state is sent by the database system one object at a time as the iteration progresses.

Uncached results can improve the performance of both the application and the database system in
situations where we have a large number of objects in the result or if we will only examine a
small portion of the returned objects. However, uncached results have a number of limitations.
There can only be one uncached result in a transaction. Creating another result (cached or
uncached) by callingdatabase::query() will invalidate the existing uncached result.
Furthermore, calling any other database functions, suaipdate() or erase() will also
invalidate the uncached result.

Theempty() function returndrue if there are no objects in the result datde otherwise.
Thesize() function can only be called for cached results. It returns the number of objects in
the result. If we call this function on an uncached result,otlie:result_not_cached

exception is thrown.

To iterate over the objects in a result we usebébgin() andend() functions together with
theodb::result<T>::iterator type, for example:

66 C++ Object Persistence with ODB Revision 2.1, November 2012

4.4 Query Result

result r (db.query<person> (query::first == "John"));

for (result::iterator i (r.begin ()); i I=r.end (); ++i)

{
=

In C++11 we can use thauto -typed variabe instead of spelling the iterator type explicitly, for
example:

for (auto i (r.begin ()); i '=r.end (); ++i)

{
}...
The C++11 range-baséaor -loop can be used to further simplify the iteration:

for (person& p: r)

{
=

The result iterator is an input iterator which means that the only two position operations that it
supports are to move to the next object and to determine whether the end of the result stream has
been reached. In fact, the result iterator can only be in two states: the current position and the end
position. If we have two iterators pointing to the current position and then we advance one of
them, the other will advance as well. This, for example, means that it doesn’t make sense to store
an iterator that points to some object of interest in the result stream with the intent of dereferenc-
ing it after the iteration is over. Instead, we would need to store the object itself.

The result iterator has the following dereference functions that can be used to access the
pointed-to object:

namespace odb

{

template <typename T>
class result_iterator

{
public:
T*
operator-> () const;

T&
operator* () const;

typename object_traits<T>::pointer_type
load ();

void

Revision 2.1, November 2012 C++ Object Persistence with ODB 67

4.4 Query Result

load (T& X);

typename object_traits<T>::id_type
id ();

3
}

When we call th¢ or-> operator, the iterator will allocate a new instance of the object class in
the dynamic memory, load its state from the database state, and return a reference or pointer to
the new instance. The iterator maintains the ownership of the returned object and will return the
same pointer for subsequent calls to either of these operators until it is advanced to the next object
or we call the firstoad() function (see below). For example:

result r (db.query<person> (query::first == "John"));

for (result::iterator i (r.begin ()); i '=r.end ();)

{

cout << i->last () << endl; // Create an object.

person& p (*i); /I Reference to the same object.
cout << p.age () << endl;

++i; Il Free the object.

}

The overloadedesult_iterator::load() functions are similar to

database::load() . The first function returns a dynamically allocated instance of the current
object. As an optimization, if the iterator already owns an object as a result of an earlier call to the
* or -> operator, then it relinquishes the ownership of this object and returns it instead. This
allows us to write code like this without worrying about a double allocation:

result r (db.query<person> (query::first == "John"));
for (result::iterator i (r.begin ()); i I=r.end (); ++i)

if (i->last == "Doe")

{ auto_ptr p (i.load ());

}
}

Note, however, that because of this optimization, a subsequedadf) call to the* or ->
operator results in the allocation of a new object.

The secondoad() function allows us to load the current object's state into an existing
instance. For example:

68 C++ Object Persistence with ODB Revision 2.1, November 2012

4.4 Query Result

result r (db.query<person> (query::first == "John"));

person p;
for (result::iterator i (r.begin ()); i I=r.end (); ++i)

i.load (p);
cout << p.last () << endl;
cout << i.age () << endl;

}

Theid() function return the object id of the current object. While we can achieve the same by
loading the object and getting its id, this function is more efficient since it doesn’t actually create
the object. This can be useful when all we need is the object’s identifier. For example:

std::set<unsigned long> set = ...; // Persons of interest.
result r (db.query<person> (query::first == "John"));
for (result::iterator i (r.begin ()); i I=r.end (); ++i)

i{f (set.find (i.id ()) != set.end ()) // No object loaded.

cout << i->first () << endl; // Object loaded.

}
}

Revision 2.1, November 2012 C++ Object Persistence with ODB 69

5 Containers

5 Containers

The ODB runtime library provides built-in persistence support for all the commonly used stan-

dard C++98 containers, namelstd::vector , std::list , Std::set , std::multi-

set, stdimap , and std:multimap as well as C++11 std:.array ,
std::forward_list , std::unordered_set , std::unordered_multiset ,
std::unordered_map , andstd::unordered_multimap . Plus, ODB profile libraries,

that are available for commonly used frameworks and libraries (such as Boost and Qt), provide
persistence support for containers found in these frameworks and liraries (Part Ill, "Profiles"). It
is also easy to persist custom container types as discussed [ater in Section 5.4, "Using Custom

Containerg".

We don't need to do anything special to declare a member of a container type in a persistent
class. For example:

#pragma db object
class person

{

private:
std::vector<std::string> nicknames_;

};...

The complete version of the above code fragment and the other code samples presented in this
chapter can be found in tkentainer example in th@db-examples package.

A data member in a persistent class that is of a container type behaves like a value type. That is,
when an object is made persistent, the elements of the container are stored in the database. Simi
larly, when a persistent object is loaded from the database, the contents of the container are auto-
matically loaded as well. A data member of a container type can also use a smart pointer, as
discussed ih Section 7.3, "Pointers &idlLL Value Semanticg".

While an ordinary member is mapped to one or more columns in the object’s table, a member of a
container type is mapped to a separate table. The exact schema of such a table depends on th
kind of container. ODB defines the following container kinds: ordered, set, multiset, map, and
multimap. The container kinds and the contents of the tables to which they are mapped are
discussed in detail in the following sections.

Containers in ODB can contain simple value types (Section 7.1, "Simple Value[Types"), compos-
ite value types[(Section 7.2, "Composite Value Tylpes"), and pointers to olpjects (Chdpter 6,
['Relationshipg"). Containers of containers, either directly or indirectly via a composite value
type, are not allowed. A key in a map or multimap container can be a simple or composite value
type but not a pointer to an object. An index in the ordered container should be a simple integer
value type.

70 C++ Object Persistence with ODB Revision 2.1, November 2012

5.1 Ordered Containers

The value type in the ordered, set, and map containers as well as the key type in the map contain-
ers should be default-constructible. The default constructor in these types can be made private in
which case theodb::access class should be made a friend of the value or key type. For
example:

#pragma db value
class name

{
public:
name (const std::string&, const std::string&);

private:
friend class odb::access;
name ();

};...

#pragma db object
class person

{

private:
std::vector<name> aliases_;

};...

5.1 Ordered Containers

In ODB an ordered container is any container that maintains (explicitly or implicitly) an order of

its elements in the form of an integer index. Standard C++ containers that are ordered include
std::vector andstd::list as well as C++1%td::array and

std::forward_list . While elements irstd::set are also kept in a specific order, this

order is not based on an integer index but rather on the relationship between elements. As a result,
std::set is not considered an ordered container for the purpose of persistence.

The database table for an ordered container consists of at least three columns. The first column
contains the object id of a persistent class instance of which the container is a member. The
second column contains the element index within a container. And the last column contains the

element value. If the object id or element value are composite, then, instead of a single column,
they can occupy multiple columns. For an ordered container table the ODB compiler also defines

two indexes: one for the object id column(s) and the other for the index column. Section

[12.6, "Index Definition Pragmds" for more information on how to customize these indexes.

Consider the following persistent object as an example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 71

5.1 Ordered Containers

#pragma db object
class person

{

private:
#pragma db id auto
unsigned long id_;

std::vector<std::string> nicknames_;
3

The resulting database table (calfEtson_nicknames) will contain the object id column of
type unsigned long (called object_id), the index column of an integer type (called
index), and the value column of tyéd::string (calledvalue).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of an ordered container both, on the per-container and per-member basis. For mor
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person

{

private:

#pragma db table("nicknames") \
id_column("person_id") \
index_type("SMALLINT UNSIGNED") \
index_column("nickname_number") \
value_type("VARCHAR(255)") \
value_column("nickname")

std::vector<std::string> nicknames_;

};...

While the C++ container used in a persistent class may be ordered, sometimes we may wish to
store such a container in the database without the order information. In the example above, for
instance, the order of person’s nicknames is probably not important. To instruct the ODB
compiler to ignore the order in ordered containers we can usdbtheordered pragma
(Section 12.3.9,unordered "} |Section 12.4.18,Unordered "). For example:

72 C++ Object Persistence with ODB Revision 2.1, November 2012

5.2 Set and Multiset Containers

#pragma db object
class person

{

private:
#pragma db unordered
std::vector<std::string> nicknames_;

};...

The table for an ordered container that is marked unordered won't have the index column and the
order in which elements are retrieved from the database may not be the same as the order in
which they were stored.

5.2 Set and Multiset Containers

In ODB set and multiset containers (referred to as just set containers) are associative containers
that contain elements based on some relationship between them. A set container may or may not
guarantee a particular order of the elements that it stores. Standard C++ containers that are
considered set containers for the purpose of persistence irstthdet andstd::multi-

set as well as C++1&td::unordered_set andstd::unordered_multiset

The database table for a set container consists of at least two columns. The first column contains
the object id of a persistent class instance of which the container is a member. And the second
column contains the element value. If the object id or element value are composite, then, instead
of a single column, they can occupy multiple columns. ODB compiler also defines an index on a
set container table for the object id column(s). Refer to Section 12.6, "Index Definition Pragmas”
for more information on how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person

{

private:
#pragma db id auto
unsigned long id_;

std::set<std::string> emails_;

};...
The resulting database table (calpsison_emails) will contain the object id column of type
unsigned long (calledobject_id) and the value column of typd::string (called
value).

Revision 2.1, November 2012 C++ Object Persistence with ODB 73

5.3 Map and Multimap Containers

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a set container, both on the per-container and per-member basis. For more
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person

{

private:

#pragma db table("emails") \
id_column("person_id") \
value_type("VARCHAR(255)") \
value_column("email")

std::set<std::string> emails_;

};...

5.3 Map and Multimap Containers

In ODB map and multimap containers (referred to as just map containers) are associative contain-
ers that contain key-value elements based on some relationship between keys. A map container
may or may not guarantee a particular order of the elements that it stores. Standard C++ contain-
ers that are considered map containers for the purpose of persistence stdtiudap and
std::multimap as well as C++1%td::unordered_map and

std::unordered_multimap

The database table for a map container consists of at least three columns. The first column
contains the object id of a persistent class instance of which the container is a member. The
second column contains the element key. And the last column contains the element value. If the
object id, element key, or element value are composite, then instead of a single column they can
occupy multiple columns. ODB compiler also defines an index on a map container table for the
object id column(s). Refer [o Section 12.6, "Index Definition Pragmas" for more information on
how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person

{

private:
#pragma db id auto
unsigned long id_;

74 C++ Object Persistence with ODB Revision 2.1, November 2012

5.4 Using Custom Containers

std::map<unsigned short, float> age_weight_map_;
3

The resulting database table (calleerson_age weight map) will contain the object id
column of typeunsigned long (calledobject_id), the key column of typensigned
short (calledkey), and the value column of tyfleat (calledvalue).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a map container, both on the per-container and per-member basis. For more
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person

{

private:

#pragma db table("weight_map") \
id_column("person_id") \
key_type("INT UNSIGNED") \
key_ column("age") \
value_type("DOUBLE") \
value_column("weight")

std::map<unsigned short, float> age_weight_map_;

};...

5.4 Using Custom Containers

While the ODB runtime and profile libraries provide support for a wide range of containers, it is
also easy to persist custom container types.

To achieve this you will need to implement ttentainer_traits class template specializa-
tion for your container. First, determine the container kind (ordered, set, multiset, map, or
multimap) for your container type. Then use a specialization for one of the standard C++ contain-
ers found in the common ODB runtime libralp@db) as a base for your own implementation.

Once the container traits specialization is ready for your container, you will need to include it into
the ODB compilation process using thedb-epilogue option and into the generated header

files with the --hxx-prologue option. As an example, suppose we have a hash table
container for which we have the traits specialization implemented in the
hashtable-traits.hxx file. Then, we can create an ODB compiler options file for this

container and save it teashtable.options

Revision 2.1, November 2012 C++ Object Persistence with ODB 75

5.4 Using Custom Containers

Options file for the hash table container.

#

--odb-epilogue '#include "hashtable-traits.hxx™
--hxx-prologue '#include "hashtable-traits.hxx"

Now, whenever we compile a header file that uses the hashtable container, we can specify the
following command line option to make sure it is recognized by the ODB compiler as a container
and the traits file is included in the generated code:

--options-file hashtable.options

76 C++ Object Persistence with ODB Revision 2.1, November 2012

6 Relationships

6 Relationships

Relationships between persistent objects are expressed with pointers or containers of pointers.
The ODB runtime library provides built-in support fehared_ptr /weak ptr (TR1 or
C++11), std::unique_ptr (C++11), std::auto_ptr , and raw pointers. Plus, ODB
profile libraries, that are available for commonly used frameworks and libraries (such as Boost
and Qt), provide support for smart pointers found in these frameworks and lidraries (Rart lil,
['Profiles’). It is also easy to add support for a custom smart pointer as discussed later ih Section
[6.5, "Using Custom Smart Pointgrs". Any supported smart pointer can be used in a data member
as long as it can be explicitly constructed from the canonical object pointer (Section 3.3 "Object
[and View Pointerg"). For example, we can wsak_ptr if the object pointer ishared_ptr

When an object containing a pointer to another object is loaded, the pointed-to object is loaded as
well. In some situations this eager loading of the relationships is undesirable since it can lead to a
large number of otherwise unused objects being instantiated from the database. To support finer
control over relationships loading, the ODB runtime and profile libraries provide the so-called
lazy versions of the supported pointers. An object pointed-to by a lazy pointer is not loaded auto-
matically when the containing object is loaded. Instead, we have to explicitly request the instanti-
ation of the pointed-to object. Lazy pointers are discussed in detail in Section 6.4, "Lazy Point-

ferst.

As a simple example, consider the following employee-employer relationship. Code examples
presented in this chapter will use gteared_ptr andweak _ptr smart pointers from the TR1
(std::trl) namespace.

#pragma db object
class employer

{

#pragma db id
std::string name_;

I3

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

std::string first_name_;

Revision 2.1, November 2012 C++ Object Persistence with ODB 77

6 Relationships

std::string last_name_;

shared_ptr<employer> employer_;

%

By default, an object pointer can bBJLL To specify that a pointer always points to a valid
object we can use tht_null pragma|(Section 12.4.6qdll /not_null ") for single object
pointers and thealue_not_null pragma|(Section 12.4.23,

['value null /value not null ") for containers of object pointers. For example:

#pragma db object
class employee

{

#pragma db not_null
shared_ptr<employer> current_employer_;

#pragma db value_not_null
std::vector<shared_ptr<employer> > previous_employers_;

3

In this case, if we perform a database operation on eifmployee object and the
current_employer_ pointer or one of the pointers stored in pinevious_employers__
container iNULL, then theodb::null_pointer exception will be thrown.

We don’t need to do anything special to establish or navigate a relationship between two persis-
tent objects, as shown in the following code fragment:

/I Create an employer and a few employees.

I

unsigned long john_id, jane_id;

{
shared_ptr<employer> er (new employer ("Example Inc"));
shared_ptr<employee> john (new employee ("John", "Doe"));
shared_ptr<employee> jane (new employee ("Jane", "Doe"));

john->employer_ =er;
jane->employer_ = er;

transaction t (db.begin ());
db.persist (er);
john_id = db.persist (john);

jane_id = db.persist (jane);

t.commit ();

78 C++ Object Persistence with ODB Revision 2.1, November 2012

6 Relationships

/I Load a few employee objects and print their employer.
I

{

session s;
transaction t (db.begin ());

shared_ptr<employee> john (db.load<employee> (john_id));
shared_ptr<employee> jane (db.load<employee> (jane_id));

cout << john->employer_->name_ << endl;
cout << jane->employer_->name_ << endl;

t.commit ();

}

The only notable line in the above code is the creation of a session before the second transaction
starts. As discussed |in Chapter 10, "Sespkion", a session acts as a cache of persistent objects. B
creating a session before loading #mployee objects we make sure that themployer

pointers point to the sam@mployer object. Without a session, eaemployee would have

ended up pointing to its own, private instance of the Example Inc employer.

As a general guideline, you should use a session when loading objects that have pointers to other
persistent objects. A session makes sure that for a given object id, a single instance is shared
among all other objects that relate to it.

We can also use data members from pointed-to objects in database fueries (Chapter 4, ["Querying
fthe Databasg"). For each pointer in a persistent class, the query class defines a smart pointer-like
member that contains members corresponding to the data members in the pointed-to object. We
can then use the access via a pointer syntax to refer to data members in pointed-to objects.

For example, the query class for temployee object contains themployer member (its

name is derived from themployer_ pointer) which in turn contains theame member (its

name is derived from themployer::name_ data member of the pointed-to object). As a
result, we can use tlgiery::employer->name expression while querying the database for

the employee objects. For example, the following transaction finds all the employees of
Example Inc that have the Doe last name:

typedef odb::query<employee> query;
typedef odb::result<employee> result;

session s;
transaction t (db.begin ());

result r (db.query<employee> (
query::employer->name == "Example Inc" && query::last == "Doe"));

Revision 2.1, November 2012 C++ Object Persistence with ODB 79

6.1 Unidirectional Relationships

for (result::iterator i (r.begin ()); i = r.end (); ++i)
cout << i->first_ << " " << j->last_ << end|;

t.commit ();

A query class member corresponding to a non-invgrse (Section 6.2, "Bidirectional Relation-
[ships}) object pointer can also be used as a normal member that has the id type of the pointed-to
object. For example, the following query locates all engployee objects that don’t have an
associateé@mployer object:

result r (db.query<employee> (query::employer.is_null ()));

An important concept to keep in mind when working with object relationships is the indepen-
dence of persistent objects. In particular, when an object containing a pointer to another object is
made persistent or is updated, the pointed-to object is not automatically persisted or updated.
Rather, only a reference to the object (in the form of the object id) is stored for the pointed-to
object in the database. The pointed-to object itself is a separate entity and should be made persis:
tent or updated independently.

When persisting or updating an object containing a pointer to another object, the pointed-to object
must have a valid object id. This, however, may not always be easy to achieve in complex rela-
tionships that involve objects with automatically assigned identifiers. In such cases it may be
necessary to first persist an object with a pointer setibl and then, once the pointed-to object

is made persistent and its identifier assigned, set the pointer to the correct value and update the
object in the database.

Persistent object relationships can be divided into two groups: unidirectional and bidirectional.
Each group in turn contains several configurations that vary depending on the cardinality of the
sides of the relationship. All possible unidirectional and bidirectional configurations are discussed
in the following sections.

6.1 Unidirectional Relationships

In unidirectional relationships we are only interested in navigating from object to object in one
direction. Because there is no interest in navigating in the opposite direction, the cardinality of the
other end of the relationship is unimportant. As a result, there are only two possible unidirectional
relationships: to-one and to-many. Each of these relationships is described in the following
sections. For sample code that shows how to work with these relationships, refereta-the
tionship example in th@db-examples package.

80 C++ Object Persistence with ODB Revision 2.1, November 2012

6.1.1 To-One Relationships

6.1.1 To-One Relationships

An example of a unidirectional to-one relationship is the employee-employer relationship (an
employee has one employer). The following persistent C++ classes model this relationship:

#pragma db object
class employer

{

#pragma db id
std::string name_;

3

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<employer> employer_;

h
The corresponding database tables look like this:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employer VARCHAR (255) NOT NULL REFERENCES employer (name));

6.1.2 To-Many Relationships

An example of a unidirectional to-many relationship is the employee-project relationship (an
employee can be involved in multiple projects). The following persistent C++ classes model this
relationship:

#pragma db object
class project

{

#pragma db id
std::string name_;

%

Revision 2.1, November 2012 C++ Object Persistence with ODB 81

6.1.2 To-Many Relationships

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db value_not_null unordered
std::vector<shared_ptr<project> > projects_;

3
The corresponding database tables look like this:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
object_id BIGINT UNSIGNED NOT NULL,
value VARCHAR (255) NOT NULL REFERENCES project (name));

To obtain a more canonical database schema, the names of tables and columns above can b
customized using ODB pragmas (Chapter 12, "ODB Pragma Language"). For example:

#pragma db object
class employee

{

#pragma db value_not_null unordered \
id_column("employee_id") value_column("project_name")
std::vector<shared_ptr<project> > projects_;

}1
The resultingemployee_projects table would then look like this:
CREATE TABLE employee_projects (

employee_id BIGINT UNSIGNED NOT NULL,
project_name VARCHAR (255) NOT NULL REFERENCES project (name));

82 C++ Object Persistence with ODB Revision 2.1, November 2012

6.2 Bidirectional Relationships

6.2 Bidirectional Relationships

In bidirectional relationships we are interested in navigating from object to object in both direc-
tions. As a result, each object class in a relationship contains a pointer to the other object. If smart
pointers are used, then a weak pointer should be used as one of the pointers to avoid ownershif
cycles. For example:

class employee;

#pragma db object
class position

{

#pragma db id
unsigned long id_;

weak_ptr<employee> employee_;

3

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<position> position_;

h

Note that when we establish a bidirectional relationship, we have to set both pointers consistently.
One way to make sure that a relationship is always in a consistent state is to provide a single
function that updates both pointers at the same time. For example:

#pragma db object
class position: public enable_shared_from_this<position>

{

void
fill (shared_ptr<employee> €)

{
employee =e¢;
e->positions_ = shared_from_this ();

}

private:

Revision 2.1, November 2012 C++ Object Persistence with ODB 83

6.2 Bidirectional Relationships

weak_ptr<employee> employee_;

%

#pragma db object
class employee

{

private:
friend class position;

#pragma db not_null
shared_ptr<position> position_;

%

At the beginning of this chapter we examined how to use a session to make sure a single object is
shared among all other objects pointing to it. With bidirectional relationships involving weak
pointers the use of a session becomes even more crucial. Consider the following transaction that
tries to load theosition object from the above example without using a session:

transaction t (db.begin ()
shared_ptr<position> p (db.load<position> (1));

t.commit ();

When we load th@osition object, theemployee object, which it points to, is also loaded.
While employee is initially stored ashared ptr , it is then assigned to themployee

member which isveak ptr . Once the assignment is complete, the shared pointer goes out of
scope and the only pointer that points to the newly loadgaloyee object is theemployee

weak pointer. And that means thmployee object is deleted immediately after being loaded.

To help avoid such pathological situations ODB detects cases where a newly loaded object will
immediately be deleted and throws tiah::session_required exception.

As the exception name suggests, the easiest way to resolve this problem is to use a session:

session s;
transaction t (db.begin ()
shared_ptr<position> p (db.load<position> (1));

t.commit ();

In our example, the session will maintain a shared pointer to the laadphbyee object
preventing its immediate deletion. Another way to resolve this problem is to avoid immediate
loading of the pointed-to objects using lazy weak pointers. Lazy pointers are discissed ih Section
[6.4, "Lazy Pointerg" later in this chapter.

84 C++ Object Persistence with ODB Revision 2.1, November 2012

6.2 Bidirectional Relationships

Above, to model a bidirectional relationship in persistent classes, we used two pointers, one in
each object. While this is a natural representation in C++, it does not translate to a canonical rela-
tional model. Consider the database schema generated for the above two classes:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

While this database schema is valid, it is unconventional. We have a reference from a row in the
position table to a row in themployee table. We also have a reference from this same row

in the employee table back to the row in thgosition table. From the relational point of

view, one of these references is redundant since in SQL we can easily navigate in both directions
using just one of these references.

To eliminate redundant database schema references we can isestbe pragma [(Sectidn
[12.4.14, inverse ") which tells the ODB compiler that a pointer is the inverse side of a bidirec-
tional relationship. Either side of a relationship can be made inverse. For example:

#pragma db object
class position

{

#pragma db inverse(position_)
weak_ptr<employee> employee_;

3

#pragma db object
class employee

{

#pragma db not_null
shared_ptr<position> position_;

h
The resulting database schema looks like this:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (

id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

Revision 2.1, November 2012 C++ Object Persistence with ODB 85

6.2.1 One-to-One Relationships

As you can see, an inverse member does not have a corresponding column (or table, in case of ar
inverse container of pointers) and, from the point of view of database operations, is effectively
read-only. The only way to change a bidirectional relationship with an inverse side is to set its
direct (non-inverse) pointer. Also note that an ordered contginer (Section 5.1, "Ordered [Contain-
lers]) of pointers that is an inverse side of a bidirectional relationship is always treated as
unordered|(Section 12.4.18jdordered ") because the contents of such a container are implic-

itly built from the direct side of the relationship which does not contain the element order (index).

There are three distinct bidirectional relationships that we will cover in the following sections:
one-to-one, one-to-many, and many-to-many. We will only talk about bidirectional relationships
with inverse sides since they result in canonical database schemas. For sample code that show:
how to work with these relationships, refer to theerse example in theodb-examples

package.

6.2.1 One-to-One Relationships

An example of a bidirectional one-to-one relationship is the presented above employee-position
relationship (an employee fills one position and a position is filled by one employee). The follow-
ing persistent C++ classes model this relationship:

class employee;

#pragma db object
class position

{

#pragma db id
unsigned long id_;

#pragma db inverse(position_)
weak_ptr<employee> employee_;

h

#pragma db object
class employee

{
#pragma db id
unsigned long id_;
#pragma db not_null

shared_ptr<position> position_;

h

86 C++ Object Persistence with ODB Revision 2.1, November 2012

6.2.2 One-to-Many Relationships

The corresponding database tables look like this:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

If instead the other side of this relationship is made inverse, then the database tables will change
as follows:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.2 One-to-Many Relationships

An example of a bidirectional one-to-many relationship is the employer-employee relationship
(an employer has multiple employees and an employee is employed by one employer). The
following persistent C++ classes model this relationship:

class employee;

#pragma db object
class employer

{

#pragma db id
std::string name_;

#pragma db value_not_null inverse(employer)
std::vector<weak _ptr<employee> > employees_

h

#pragma db object
class employee

{
#pragma db id
unsigned long id_;
#pragma db not_null

shared_ptr<employer> employer_;

h

Revision 2.1, November 2012 C++ Object Persistence with ODB 87

6.2.3 Many-to-Many Relationships

The corresponding database tables differ significantly depending on which side of the relation-
ship is made inverse. If thaneside €mployer) is inverse as in the code above, then the result-
ing database schema looks like this:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employer VARCHAR (255) NOT NULL REFERENCES employer (name));

If instead themany side €mployee) of this relationship is made inverse, then the database
tables will change as follows:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
object_id VARCHAR (255) NOT NULL,
value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.3 Many-to-Many Relationships

An example of a bidirectional many-to-many relationship is the employee-project relationship (an
employee can work on multiple projects and a project can have multiple participating employ-
ees). The following persistent C++ classes model this relationship:

class employee;

#pragma db object
class project

{

#pragma db id
std::string name_;

#pragma db value_not_null inverse(projects_)
std::vector<weak ptr<employee> > employees_;

h

#pragma db object
class employee

{

88 C++ Object Persistence with ODB Revision 2.1, November 2012

6.3 Circular Relationships

#pragma db id
unsigned long id_;

#pragma db value_not_null unordered
std::vector<shared_ptr<project> > projects_;

3
The corresponding database tables look like this:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
object_id BIGINT UNSIGNED NOT NULL,
value VARCHAR (255) NOT NULL REFERENCES project (name));

If instead the other side of this relationship is made inverse, then the database tables will change
as follows:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE project_employees (
object_id VARCHAR (255) NOT NULL,
value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.3 Circular Relationships

A relationship between two persistent classes is circular if each of them references the other.
Bidirectional relationships are always circular. A unidirectional relationship combined with inher-
itance |(Chapter 8, "Inheritan¢e") can also be circular. For examplenthyee class could

derive fromperson which, in turn, could contain a pointerémployee .

We don’t need to do anything extra if persistent classes with circular dependencies are defined in
the same header file. Specifically, ODB will make sure that the database tables and foreign key
constraints are created in the correct order. As a result, unless you have good reasons not to, it is
recommended that you keep persistent classes with circular dependencies in the same header file.

If you have to keep such classes in separate header files, then there are two extra steps that you
may need to take in order to use these classes with ODB. Consider again the example from
[Section 6.2.1, "One-to-One Relationshjps” but this time with the classes defined in separate

Revision 2.1, November 2012 C++ Object Persistence with ODB 89

6.3 Circular Relationships

headers:

/I position.hxx
I
class employee;

#pragma db object
class position

{

#pragma db id
unsigned long id_;

#pragma db inverse(position_)
weak_ptr<employee> employee_;

3

/I employee.hxx
I
#include "position.hxx"

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<position> position_;

h

Note that theposition.hxx header contains only the forward declaration dorployee .

While this is sufficient to define a valid, from the C++ point of vipasition class, the ODB
compiler needs to "see" the definitions of the pointed-to persistent classes. There are several ways
we can fulfil this requirement. The easiest is to simply incleigloyee.hxx at the end of
position.hxx

/I position.hxx
I
class employee;

#pragma db object
class position

{

90 C++ Object Persistence with ODB Revision 2.1, November 2012

6.3 Circular Relationships

};...

#include "employee.hxx"

We can also limit this inclusion only to the time whawsition.hxx is compiled with the
ODB compiler:

/I position.hxx
I

#ifdef ODB_COMPILER
include "employee.hxx"

#endif
Finally, if we don’t want to modifyposition.hxx , then we can addmployee.hxx to the
ODB compilation process with theodb-epilogue option. For example:

odb ... --odb-epilogue "#include \"employee.hxx\"" position.hxx

Note also that in this example we didn’t have to do anything extrenfptoyee.hxx because

it already includegposition.hxx . However, if instead it relied only on the forward declara-
tion of the position class, then we would have to handle it in the same wagyosis
tion.hxx

The other difficulty with separately defined classes involving circular relationships has to do with
the correct order of foreign key constraint creation in the generated database schema. In the above
example, if we generate the database schema as standalone SQL files, then we will end up with
two such files:position.sq|l andemployee.sgl . If we try to executemployee.sql

first, then we will get an error indicating that the table corresponding fwoiton class and
referenced by the foreign key constraint corresponding tpdbiion_ pointer does not yet

exist.

Note that there is no such problem if the database schema is embedded in the generated C++ cod
instead of being produced as standalone SQL files. In this case, the ODB compiler is able to
ensure the correct creation order even if the classes are defined in separate header files.

In certain cases, for example, a bidirectional relationship with an inverse side, this problem can
be resolved by executing the database schema creation files in the correct order. In our example,
this would beposition.sql first and employee.sq|l second. However, this approach
doesn’t scale beyond simple object models.

Revision 2.1, November 2012 C++ Object Persistence with ODB 91

6.4 Lazy Pointers

A more robust solution to this problem is to generate the database schema for all the persistent
classes into a single SQL file. This way, the ODB compiler can again ensure the correct creation
order of tables and foreign keys. To instruct the ODB compiler to produce a combined schema
file for several headers we can use thgenerate-schema-only and --at-once

options. For example:

odb ... --generate-schema-only --at-once --output-name schema\
position.hxx employee.hxx

The result of the above command is a singgbema.sql file that contains the database
creation code for botposition andemployee classes.

6.4 Lazy Pointers

Consider again the bidirectional, one-to-many employer-employee relationship that was
presented earlier in this chapter:

class employee;

#pragma db object
class employer

{

#pragma db id
std::string name_;

#pragma db value_not_null inverse(employer)
std::vector<weak_ptr<employee> > employees_;

k

#pragma db object
class employee

{
#pragma db id
unsigned long id_;
#pragma db not_null
shared_ptr<employer> employer_;

k

Consider also the following transaction which obtains the employer name given the employee id:

92 C++ Object Persistence with ODB Revision 2.1, November 2012

6.4 Lazy Pointers

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
name = e->employer_->name_;

t.commit ();

While this transaction looks very simple, it actually does a lot more than what meets the eye and
is necessary. Consider what happens when we loaéntipdoyee object: theemployer_

pointer is also automatically loaded which meanseimployer object corresponding to this
employee is also loaded. But temployer object in turn contains the list of pointers to all the
employees, which are also loaded. A a result, when object relationships are involved, a simple
transaction like the above can load many more objects than is necessary.

To overcome this problem ODB offers finer grained control over the relationship loading in the
form of lazy pointers. A lazy pointer does not automatically load the pointed-to object when the
containing object is loaded. Instead, we have to explicitly load the pointed-to object if and when
we need to access it.

The ODB runtime library provides lazy counterparts for all the supported pointers, namely:
odb::lazy_shared_ptr llazy _weak ptr for C++11std::shared_ptr Iweak_ptr ,
odb::trl::lazy_shared_ptr llazy _weak ptr for TR1

std::trl::shared_ptr /weak_ptr , odb::lazy unique_ptr for C++11

std::unique_ptr ,odb::lazy_auto_ptr for std::auto_ptr , and

odb::lazy ptr for raw pointers. The TR1 lazy pointers are defined in the
<odb/trl/lazy-ptr.hxx> header while all the others — kodb/lazy-ptr.hxx>

The ODB profile libraries also provide lazy pointer implementations for smart pointers from
popular frameworks and librarigs (Part Ill, "Profiles").

While we will discuss the interface of lazy pointers in more detail shortly, the most commonly
used extra function provided by these pointerkasl() . This function loads the pointed-to
object if it hasn't already been loaded. After the call to this function, the lazy pointer can be used
in the the same way as its eager counterpartlodd) function also returns the eager pointer,

in case you need to pass it around. For a lazy weak pointdoati@ function also locks the
pointer.

The following example shows how we can change our employer-employee relationship to use
lazy pointers. Here we choose to use lazy pointers for both sides of the relationship.

Revision 2.1, November 2012 C++ Object Persistence with ODB 93

6.4 Lazy Pointers

class employee;

#pragma db object
class employer

{

#pragma db value_not_null inverse(employer)
std::vector<lazy weak ptr<employee> > employees_;

%

#pragma db object
class employee

{

#pragma db not_null
lazy _shared_ptr<employer> employer_;

h
And the transaction is changed like this:

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();

As a general guideline we recommend that you make at least one side of a bidirectional relation-
ship lazy, especially for relationships witlmanyside.

A lazy pointer implementation mimics the interface of its eager counterpart which can be used
once the pointer is loaded. It also adds a number of additional functions that are specific to the
lazy loading functionality. Overall, the interface of a lazy pointer follows this general outline:

template <class T>
class lazy ptr

{

public:
I
/I The eager pointer interface.
I

/I Initialization/assignment from an eager pointer.

94 C++ Object Persistence with ODB Revision 2.1, November 2012

6.4 Lazy Pointers

I
public:
template <class Y> lazy_ptr (const eager_ptr<Y>&);
template <class Y> lazy_ ptr& operator= (const eager_ptr<Y>&);

/I Lazy loading interface.

I

public:

/I NULL loaded()

I

/I true true NULL pointer to transient object
/l false true valid pointer to persistent object
/I true false unloaded pointer to persistent object
/I false false valid pointer to transient object
I

bool loaded () const;

eager_ptr<T> load () const;

/I Unload the pointer. For transient objects this function is
/I equivalent to reset().

I

void unload () const;

/I Initialization with a persistent loaded object.

I

template <class Y> lazy_ptr (database&, Y*);

template <class Y> lazy_ptr (database&, const eager_ptr<Y>&);

template <class Y> void reset (database&, Y*);
template <class Y> void reset (database&, const eager_ptr<Y>&);

/I Initialization with a persistent unloaded object.
I
template <class ID> lazy ptr (database&, const ID&);

template <class ID> void reset (database&, const ID&);

/I Query object id and database of a persistent object.
I

template <class O /* =T */>

/l C++11: template <class O = T>

object _traits<O>::id_type object_id () const;

odb::database& database () const;

h

In a lazy weak pointer interface, tlead() function returns thetrong (shared) eager pointer.
The following transaction demonstrates the use of a lazy weak pointer basedeamptbger
andemployee classes presented earlier.

Revision 2.1, November 2012 C++ Object Persistence with ODB 95

6.4 Lazy Pointers

typedef std::vector<lazy weak ptr<employee> > employees;

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
employees& es (er->employees ());

for (employees::iterator i (es.begin ()); i 1= es.end (); ++i)

{

/' We are only interested in employees with object id less than
// 100.

I

lazy weak_ ptr<employee>& lwp (*i);

if (Iwp.object_id<employee> () < 100)
/I C++11: if (lwp.object_id () < 100)
{

shared_ptr<employee> e (lwp.load ()); // Load and lock.
cout << e->first << "" << e->last_ << end;

}
}

t.commit ();

Notice that inside the for-loop we use a reference to the lazy weak pointer instead of making a
copy. This is not merely to avoid a copy. When a lazy pointer is loaded, all other lazy pointers
that point to the same object do not automatically become loaded (though an attempt to load such
copies will result in them pointing to the same object, provided the same session is still in effect).
By using a reference in the above transaction we make sure that we load the pointer that is
contained in themployer object. This way, if we later need to re-examine #ngployee

object, the pointer will already be loaded.

As another example, suppose we want to add an employee to Example Inc. The straightforward
implementation of this transaction is presented below:

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ =er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();

96 C++ Object Persistence with ODB Revision 2.1, November 2012

6.5 Using Custom Smart Pointers

Notice here that we didn’t have to update the employer object in the database samopltye
ees_ list of pointers is an inverse side of a bidirectional relationship and is effectively read-only,
from the persistence point of view.

A faster implementation of this transaction, that avoids loading the employer object, relies on the
ability to initialize anunloadedlazy pointer with the database where the object is stored as well
as its identifier:

lazy _shared_ptr<employer> er (db, std::string ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ =er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();

6.5 Using Custom Smart Pointers

While the ODB runtime and profile libraries provide support for the majority of widely-used
pointers, it is also easy to add support for a custom smart pointer.

To achieve this you will need to implement fh@nter_traits class template specialization

for your pointer. The first step is to determine the pointer kind since the interface of the
pointer_traits specialization varies depending on the pointer kind. The supported pointer
kinds areraw (raw pointer or equivalent, that is, unmanageadjgue(smart pointer that doesn’t
support sharingshared(smart pointer that supports sharing), arehk(weak counterpart of the
shared pointer). Any of these pointers can be lazy, which also affects the interface of the
pointer_traits specialization.

Once you have determined the pointer kind for your smart pointer, use a specialization for one of
the standard pointers found in the common ODB runtime libldygdp) as a base for your
own implementation.

Once the pointer traits specialization is ready, you will need to include it into the ODB compila-
tion process using theodb-epilogue option and into the generated header files with the
--hxx-prologue option. As an example, suppose we havesthart_ptr smart pointer for
which we have the traits specialization implemented insthart-ptr-traits.hxx file.

Then, we can create an ODB compiler options file for this pointer and save it to
smart-ptr.options

Revision 2.1, November 2012 C++ Object Persistence with ODB 97

6.5 Using Custom Smart Pointers

Options file for smart_ptr.

#

--odb-epilogue '#include "smart-ptr-traits.hxx™
--hxx-prologue '#include "smart-ptr-traits.hxx™

Now, whenever we compile a header file that useart_ptr , we can specify the following
command line option to make sure it is recognized by the ODB compiler as a smart pointer and
the traits file is included in the generated code:

--options-file smart-ptr.options

It is also possible to implement a lazy counterpart for your smart pointer. The ODB runtime
library provides a class template that encapsulates the object id management and loading func-
tionality that is needed to implement a lazy pointer. All you need to do is wrap it with an interface
that mimics your smart pointer. Using one of the existing lazy pointer implementations (either
from the ODB runtime library or one of the profile libraries) as a base for your implementation is
the easiest way to get started.

98 C++ Object Persistence with ODB Revision 2.1, November 2012

7 Value Types

7 Value Types

In[Section 3.1, "Concepts and Terminoldgy" we have already discussed the notion of values and
value types as well as the distinction between simple and composite values. This chapter covers
simple and composite value types in more detalil.

7.1 Simple Value Types

A simple value type is a fundamental C++ type or a class type that is mapped to a single database
column. For each supported database system the ODB compiler provides a default mapping to
suitable database types for most fundamental C++ types, suth aw float as well as some

class types, such a&d::string . For more information about the default mapping for each
database system refer|to Part I, Database Syistems. We can also provide a custom mapping fol
these or our own value types using dlhetype pragma|(Section 12.3.1type ").

7.2 Composite Value Types

A composite value type is@dass orstruct type that is mapped to more than one database
column. To declare a composite value type we usdlihalue pragma, for example:

#pragma db value
class basic_name

{

std::string first_;
std::string last_;

h

The complete version of the above code fragment and the other code samples presented in this
section can be found in tktemposite example in th@db-examples package.

A composite value type does not have to define a default constructor, unless it is used as an
element of a container. In this case the default constructor can be made private provided we also
make theodb::access class, defined in theodb/core.hxx> header, a friend of this value

type. For example:

#include <odb/core.hxx>

#pragma db value
class basic_name

{
public:
basic_name (const std::string& first, const std::string& last);

Revision 2.1, November 2012 C++ Object Persistence with ODB 99

7.2 Composite Value Types

private:
friend class odb::access;

basic_name () {} // Needed for storing basic_name in containers.

};...

The ODB compiler also needs access to the non-transient (Section 12rdidieht ") data
members of a composite value type. It uses the same mechanisms as for persistent classes whic
are discussed |n Section 3.2, "Declaring Persistent Objects and Values".

The members of a composite value can be other value types (either simple or composite),
containers|(Chapter 5, "Containgrs"), and pointers to oblects (Chapter 6, "Relatipnships"). Simi-
larly, a composite value type can be used in object members, as an element of a container, and a:
a base for another composite value type. In particular, composite value types can be used as
element types in set containgrs (Section 5.2, "Set and Multiset Confainers") and as key types in
map containerq (Section 5.3, "Map and Multimap Containers"). A composite value type that is
used as an element of a container cannot contain other containers since containers of containers
are not allowed. The following example illustrates some of the possible use cases:

#pragma db value
class basic_name

{

std::string first_;
std::string last_;

3

typedef std::vector<basic_name> basic_names;

#pragma db value
class name_extras

{

std::string nickname_;
basic_names aliases_;

3

#pragma db value
class name: public basic_name

{

std::string title_;

100 C++ Object Persistence with ODB Revision 2.1, November 2012

7.2 Composite Value Types

name_extras extras_;

%

#pragma db object
class person

{

name name_;

%

A composite value type can also be defined as an instantiation of a C++ class template, for
example:

template <typename T>
struct point

{
TX;
Ty,
T z;
k

typedef point<int> int_point;
#pragma db value(int_point)

#pragma db object
class object

{

int_point center_;

3

Note that the database support code for such a composite value type is generated when compiling
the header containing tito value pragma and not the header containing the template defini-
tion or thetypedef name. This allows us to use templates defined in other files, such as
std::pair defined in thautility standard header file:

#include <utility> // std::pair

typedef std::pair<std::string, std::string> phone_numbers;
#pragma db value(phone_numbers)

#pragma db object
class person

{

phone_numbers phone_;

3

Revision 2.1, November 2012 C++ Object Persistence with ODB 101

7.2.1 Composite Object Ids

We can also use data members from composite value types in database [queries (Chapter 4
['Querying the Databage"). For each composite value in a persistent class, the query class defines
a nested member that contains members corresponding to the data members in the value type. W
can then use the member access syntax (.) to refer to data members in value types. For example
the query class for theerson object presented above contains tlagne member (its name is
derived from thename__ data member) which in turn contains thdéras member (its name is

derived from thename::extras_ data member of the composite value type). This process
continues recursively for nested composite value types and, as a result, we can use the
guery::name.extras.nickname expression while querying the database forpeson

objects. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());

result r (db.query<person> (
guery::name.extras.nickname == "Squeaky"));

t.commit ();

7.2.1 Composite Object Ids

An object id can be of a composite value type, for example:

#pragma db value
class name

{

std::string first_;
std::string last_;

3

#pragma db object
class person

{

#pragma db id
name name_;

3

However, a value type that can be used as an object id has a number of restrictions. Such a value
type cannot have container, object pointer, or read-only data members. It also must be
default-constructible. Furthermore, if the persistent class in which this composite value type is

102 C++ Object Persistence with ODB Revision 2.1, November 2012

7.2.2 Composite Value Column and Table Names

used as object id has session support enabled (Chapter 10, "$ession"), then it must also imple-
ment the less-than comparison operabpe(ator<).

7.2.2 Composite Value Column and Table Names

Customizing a column name for a data member of a simple value type is straightforward: we
simply specify the desired name with tifle column pragma|(Section 12.4.9¢élumn "). For
composite value types things are slightly more complex since they are mapped to multiple
columns. Consider the following example:

#pragma db value
class name

{

std::string first_;
std::string last_;

3

#pragma db object
class person

{

#pragma db id auto
unsigned long id_;

name name_;

3

The column names for tfegst .~ andlast. members are constructed by using the sanitized
name of theperson::name_ member as a prefix and the names of the members in the value
type first_ andlast_) as suffixes. As a result, the database schema for the above classes
will look like this:

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
name_first TEXT NOT NULL,
name_last TEXT NOT NULL);

We can customize both the prefix and the suffix usingdtheolumn pragma as shown in the
following example:

#pragma db value
class name

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 103

7.2.2 Composite Value Column and Table Names

#pragma db column("first_name")
std::string first_;

#pragma db column("last_name")
std::string last_;

h

#pragma db object
class person

{

#pragma db column("person_")
name name_;

h
The database schema changes as follows:

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
person_first name TEXT NOT NULL,
person_last_ name TEXT NOT NULL);

We can also make the column prefix empty, for example:

#pragma db object
class person

{

#pragma db column("")
name name_;

h
This will result in the following schema:

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
first name TEXT NOT NULL,
last name TEXT NOT NULL);

The same principle applies when a composite value type is used as an element of a container,
except that instead oflb column , either the db value column (Section 12.4.31)

['value column ") ordb key column (Section 12.4.30Key column ") pragmas are used

to specify the column prefix.

When a composite value type contains a container, an extra table is used to store its elements
(Chapter 5, "Containefs"). The names of such tables are constructed in a way similar to the
column names, except that by default both the object name and the member name are used as

104 C++ Object Persistence with ODB Revision 2.1, November 2012

7.2.2 Composite Value Column and Table Names

prefix. For example:

#pragma db value
class name

{

std::string first_;
std::string last_;
std::vector<std::string> nicknames_;

3

#pragma db object
class person

{

name name_;

h
The corresponding database schema will look like this:

CREATE TABLE person_name_nicknames (
object_id BIGINT UNSIGNED NOT NULL,
index BIGINT UNSIGNED NOT NULL,
value TEXT NOT NULL)

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
name_first TEXT NOT NULL,
name_last TEXT NOT NULL);

To customize the container table name we can uselthable

"table "), for example:

#pragma db value
class name

{

#pragma db table("nickname")
std::vector<std::string> nicknames_;

%

#pragma db object
class person

{

Revision 2.1, November 2012 C++ Object Persistence with ODB

pragma [(Section 12.4.1D,

105

7.3 Pointers and NULL Value Semantics

#pragma db table("person_")
name name_;

h
This will result in the following schema changes:

CREATE TABLE person_nickname (
object_id BIGINT UNSIGNED NOT NULL,
index BIGINT UNSIGNED NOT NULL,
value TEXT NOT NULL)

Similar to columns, we can make the table prefix empty.

7.3 Pointers andNULL Value Semantics

Relational database systems have a notion of the sp#dldl value that is used to indicate the
absence of a valid value in a column. While by default ODB maps values to columns that do not
allow NULL values, it is possible to change that with tenull pragma|(Section 12.4.6,

['null /not null).

To properly support thBULL semantics, the C++ value type must have a notiorN\djla value

or a similar special state concept. Most basic C++ types, suoh asr std::string , do not

have this notion and therefore cannot be used directlNidrl-enabled data members (in the
case of aNULL value being loaded from the database, such data members will be default-initial-
ized).

To allow the easy conversion of value types that do not suppdsiithe semantics into the ones

that do, ODB provides thedb::nullable class template. It allows us to wrap an existing
C++ type into a container-like class that can eitheNbkL or contain a value of the wrapped

type. ODB also automatically enables tHeULL values for data members of the

odb::nullable type. For example:

#include <odb/nullable.hxx>

#pragma db object
class person

{
std::string first_; /I TEXT NOT NULL
odb::nullable<std::string> middle_; // TEXT NULL
std::string last_; /I TEXT NOT NULL

3

106 C++ Object Persistence with ODB Revision 2.1, November 2012

The odb::nullable

and has the following interface:

namespace odb

{

}

The following example shows how we can use this interface:

template <typename T>
class nullable
{
public:
typedef T value_type;

nullable ();

nullable (const T&);

nullable (const nullable&);

template <typename Y> explicit nullable (const nullable<Y>&);

nullable& operator= (const T&);
nullable& operator= (const nullable&);
template <typename Y> nullable& operator= (const nullable<Y>&);

void swap (nullable&);

/I Accessor interface.
Il
bool null () const;

T& get ();
const T& get () const;

/I Pointer interface.
I
operator bool_convertible () const;

T* operator-> ();
const T* operator-> () const;

T& operator* ();
const T& operator* () const;

/I Reset to the NULL state.
Il
void reset ();

k

nullable<string> ns;

/I Using the accessor interface.
I

Revision 2.1, November 2012 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

class template is defined in tk@db/nullable.hxx> header file

107

7.3 Pointers and NULL Value Semantics

if (ns.null ())
{

s = "abc",

}

else

{
string s (ns.get ());
ns.reset ();

}

/I The same using the pointer interface.
I

if (ns)

{

s = "abc",

}

else

{
string s (*ns);
ns.reset ();

}

Theodb::nullable class template requires the wrapped type to have public default and copy
constructors as well as the copy assignment operator. Note also thadhthrullable
implementation is not the most efficient in that it always contains a fully constructed value of the
wrapped type. This is normally not a concern for simple types such as the C++ fundamental types
or std::string . However, it may become an issue for more complex types. In such cases you
may want to consider using a more efficient implementation adptienal valueconcept such as
theoptional class template from Boost (Section 19.4, "Optional Library").

Another common C++ representation of a value that caNUWiel is a pointer. ODB will auto-
matically handle data members that are pointers to values, however, it will not automatically

enableNULL values for such data members, as is the casadfmrnullable . Instead, if the
NULL value is desired, we will need to enable it explicitly usingdbewull pragma. For
example:

#pragma db object
class person

{
std::string first_;

#pragma db null
std:;:auto_ptr<std::string> middle_;

std::string last_;

108 C++ Object Persistence with ODB Revision 2.1, November 2012

7.3 Pointers and NULL Value Semantics

The ODB compiler includes built-in support for usstg::auto_ptr , std::unique_ptr

(C++11), andshared_ptr (TR1 or C++11) as pointers to values. Plus, ODB profile libraries,
that are available for commonly used frameworks and libraries (such as Boost and Qt), provide
support for smart pointers found in these frameworks and libraries (Part Ill, "Profiles").

ODB also supports thdULL semantics for composite values. In the relational databadé be
composite value is translated MiJLL values for all the simple data members of this composite
value. For example:

#pragma db value
struct name

{

std::string first_;
odb::nullable<std::string> middle_;
std::string last_;

3

#pragma db object
class person

{

odb::nullable<name> name_;

3

ODB does not support ti¢ULL semantics for containers. This also means that a composite value
that contains a container cannot MELL With this limitation in mind, we can still use smart
pointers in data members of container types. The only restriction is that these pointers must not be
NULL For example:

#pragma db object

class person

{

std:;:auto_ptr<std::vector<std::string> > aliases_;

3

Revision 2.1, November 2012 C++ Object Persistence with ODB 109

8 Inheritance

8 Inheritance

In C++ inheritance can be used to achieve two different goals. We can employ inheritance to
reuse common data and functionality in multiple classes. For example:

class person

{

public:
const std::string& first () const;
const std::string& last () const;

private:
std::string first_;
std::string last_;

}1

class employee: public person

{

3

class contractor: public person

{

3

In the above example both teenployee andcontractor classes inherit théirst_ and
last_ data members as well as thrst() andlast() accessors from thgerson base
class.

A common trait of this inheritance style, referred toeasse inheritancérom now on, is the lack
of virtual functions and a virtual destructor in the base class. Also with this style the application
code is normally written in terms of the derived classes instead of the base.

The second way to utilize inheritance in C++ is to provide polymorphic behavior through a
common interface. In this case the base class defines a number of virtual functions and, normally,
a virtual destructor while the derived classes provide specific implementations of these virtual
functions. For example:

class person
{
public:
enum employment_status
{
unemployed,
temporary,
permanent,
self_employed

110 C++ Object Persistence with ODB Revision 2.1, November 2012

8 Inheritance

h

virtual employment_status
employment () const = 0;

virtual
~person ();

%

class employee: public person

{

public:
virtual employment_status
employment () const

{

return temporary_ ? temporary : permanent;

}

private:
bool temporary_;

%

class contractor: public person

{

public:
virtual employment_status
employment () const

{

return self_employed;

}
h

With this inheritance style, which we will cgdolymorphism inheritangethe application code
normally works with derived classes via the base class interface. Note also that it is very common
to mix both styles in the same hierarchy. For example, the above two code fragments can be
combined so that thperson base class provides the common data members and functions as
well as defines the polymorphic interface.

The following sections describe the available strategies for mapping reuse and polymorphism
inheritance styles to a relational data model. Note also that the distinction between the two styles
is conceptual rather than formal. For example, it is possible to treat a class hierarchy that defines
virtual functions as a case of reuse inheritance if this results in the desired database mapping and
semantics.

Generally, classes that employ reuse inheritance are mapped to completely independent entities in
the database. They use different object id spaces and should always be passed to and returne:
from the database operations as pointers or references to derived types. In other words, from the
persistence point of view, such classes behave as if the data members from the base classes wel

Revision 2.1, November 2012 C++ Object Persistence with ODB 111

8.1 Reuse Inheritance

copied verbatim into the derived ones.

In contrast, classes that employ polymorphism inheritance share the object id space and can be
passed to and returned from the database operatdyrmorphicallyas pointers or references to
the base class.

For both inheritance styles it is sometimes desirable to prevent instances of a base class from
being stored in the database. To achieve this a persistent class can be declared abstract using th
db abstract pragma [(Section 12.1.3abistract "). Note that aC++-abstract class, or a

class that has one or more pure virtual functions and therefore cannot be instantiated, is also
database-abstractHowever, a database-abstract class is not necessarily C++-abstract. The ODB
compiler automatically treats C++-abstract classes as database-abstract.

8.1 Reuse Inheritance

Each non-abstract class from the reuse inheritance hierarchy is mapped to a separate databas
table that contains all its data members, including those inherited from base classes. An abstract
persistent class does not have to define an object id, nor a default constructor, and it does not
have a corresponding database table. An abstract class cannot be a pointed-to object in a relation
ship. Multiple inheritance is supported as long as each base class is only inherited once. The
following example shows a persistent class hierarchy employing reuse inheritance:

/I Abstract person class. Note that it does not declare the
/l object id.

I

#pragma db object abstract

class person

{

std::string first_;
std::string last_;

g

/I Abstract employee class. It derives from the person class and
/I declares the object id for all the concrete employee types.

I

#pragma db object abstract

class employee: public person

{

#pragma db id auto
unsigned long id_;

g

/I Concrete permanent_employee class. Note that it doesn’t define

112 C++ Object Persistence with ODB Revision 2.1, November 2012

8.1 Reuse Inheritance

/[any data members of its own.

I

#pragma db object

class permanent_employee: public employee

{
=

/I Concrete temporary_employee class. It adds the employment
/l duration in months.

I

#pragma db object

class temporary_employee: public employee

{

unsigned long duration_;

%

/I Concrete contractor class. It derives from the person class

/I (and not employee; an independent contractor is not considered
/I an employee). We use the contractor’s external email address
/I as the object id.

I

#pragma db object

class contractor: public person

{

#pragma db id
std::string email_;

h
The sample database schema for this hierarchy is shown below.

CREATE TABLE permanent_employee (
first TEXT NOT NULL,
last TEXT NOT NULL,
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
first TEXT NOT NULL,
last TEXT NOT NULL,
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
duration BIGINT UNSIGNED NOT NULL);

CREATE TABLE contractor (
first TEXT NOT NULL,
last TEXT NOT NULL,
email VARCHAR (255) NOT NULL PRIMARY KEY);

Revision 2.1, November 2012 C++ Object Persistence with ODB 113

8.2 Polymorphism Inheritance

The complete version of the code presented in this section is available inhdre
tance/reuse example in th@db-examples package.

8.2 Polymorphism Inheritance

There are three general approaches to mapping a polymorphic class hierarchy to a relational
database. These atable-per-hierarchy table-per-difference and table-per-class With the
table-per-hierarchy mapping, all the classes in a hierarchy are stored in a single, "wide" table.
NULL values are stored in columns corresponding to data members of derived classes that are not
present in any particular instance.

In the table-per-difference mapping, each class is mapped to a separate table. For a derived class
this table contains only columns corresponding to the data members added by this derived class.

Finally, in the table-per-class mapping, each class is mapped to a separate table. For a derived
class, this table contains columns corresponding to all the data members, from this derived class
all the way down to the root of the hierarchy.

The table-per-difference mapping is generally considered as having the best balance of flexibility,
performance, and space efficiency. It also results in a more canonical relational database model
compared to the other two approaches. As a result, this is the mapping currently implemented in
ODB. Other mappings may be supported in the future.

A pointer or reference to an ordinary, non-polymorphic object has just one type — the class type
of that object. When we start working with polymorphic objects, there are two types to consider:
thestatic type or the declaration type of a reference or pointer, and the object’s actlyalaonic

type An example will help illustrate the difference:

class person {...};
class employee: public person {...};

person p;
employee e;

person& rl (p);
person& r2 (e);

auto_ptr<person> pl (new employee);

In the above example, thg reference’s both static and dynamic typespateson . In contrast,
ther2 reference’s static type erson while its dynamic type (the actual object that it refers
to) isemployee . Similarly, p1 points to the object of theerson static type buemployee
dynamic type.

114 C++ Object Persistence with ODB Revision 2.1, November 2012

8.2 Polymorphism Inheritance

In C++, the primary mechanisms for working with polymorphic objects are virtual functions. We
call a virtual function only knowing the object’s static type, but the version corresponding to the
object’'s dynamic type is automatically executed. This is the essence of runtime polymorphism
support in C++: we can operate in terms of a base class interface but get the derived class’ behav-
ior. Similarly, the essence of the runtime polymorphism support in ODB is to allow us to persist,
load, update, and query in terms of the base class interface but have the derived class actually
stored in the database.

To declare a persistent class as polymorphic we usdhtipelymorphic pragma. We only
need to declare the root class of a hierarchy as polymorphic; ODB will treat all the derived
classes as polymorphic automatically. For example:

#pragma db object polymorphic
class person

{

virtual
~person () = 0; // Automatically abstract.

#pragma db id auto
unsigned long id_;

std::string first_;
std::string last_;

h

#pragma db object
class employee: public person

{

bool temporary_;

%

#pragma db object
class contractor: public person

{

std::string email_;

%

A persistent class hierarchy declared polymorphic must also be polymorphic in the C++ sense,

that is, the root class must declare or inherit at least one virtual function. It is recommended that

the root class also declares a virtual destructor. The root class of the polymorphic hierarchy must

contain the data member designated as object id (a persistent class without an object id cannot be
polymorphic). Note also that, unlike reuse inheritance, abstract polymorphic classes have a table
in the database, just like non-abstract classes.

Revision 2.1, November 2012 C++ Object Persistence with ODB 115

8.2 Polymorphism Inheritance

Persistent classes in the same polymorphic hierarchy must use the same kind of object pointer
(Section 3.3, "Object and View Pointgrs"). If the object pointer for the root class is specified as a
template or using the special raw pointer syntgx then the ODB compiler will automatically

use the same object pointer for all the derived classes. For example:

#pragma db object polymorphic pointer(std::shared_ptr)
class person

{
=

#pragma db object // Object pointer is std::shared_ptr<employee>.
class employee: public person

{
=

#pragma db object // Object pointer is std::shared_ptr<contractor>.
class contractor: public person

{
=

Similarly, if we enable or disable session support (Chapter 10, "Sgssion") for the root class, then
the ODB compiler will automatically enable or disable it for all the derived classes.

For polymorphic persistent classes, all the database operations can be performed on objects with
different static and dynamic types. Similarly, operations that load persistent objects from the
databaselg¢ad() , query() , etc.), can return objects with different static and dynamic types.

For example:

unsigned long id1, id2;

/Il Persist.

1

{
shared_ptr<person> p1l (new employee (...));
shared_ptr<person> p2 (new contractor (...));

transaction t (db.begin ());

id1 = db.persist (pl); // Stores employee.
id2 = db.persist (p2); // Stores contractor.
t.commit ();

}

/I Load.
1

{

shared_ptr<person> p;

116 C++ Object Persistence with ODB Revision 2.1, November 2012

transaction t (db.begin ());

p = db.load<person> (id1); // Loads employee.
p = db.load<person> (id2); // Loads contractor.
t.commit ();

}

/I Query.
I

{
typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());
result r (db.query<person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i I=r.end (); ++i)

{

person& p (*i); // Can be employee or contractor.

t.commit ();

}

/I Update.
I

{

shared_ptr<person> p;
shared_ptr<employee> €;

transaction t (db.begin ());

e = db.load<employee> (id1);
e->temporary (false);

p=¢€

db.update (p); // Updates employee.

t.commit ();

}

/I Erase.
1

{

shared_ptr<person> p;

transaction t (db.begin ());
p = db.load<person> (id1); // Loads employee.

Revision 2.1, November 2012 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

117

8.2 Polymorphism Inheritance

db.erase (p); /I Erases employee.
db.erase<person> (id2); // Erases contractor.
t.commit ();

}

The table-per-difference mapping, as supported by ODB, requires two extra columns, in addition
to those corresponding to the data members. The first, ciiedminator, is added to the table
corresponding to the root class of the hierarchy. This column is used to determine the dynamic
type of each object. The second column is added to tables corresponding to the derived classes
and contains the object id. This column is used to form a foreign key constraint referencing the
root class table.

When querying the database for polymorphic objects, it is possible to obtain the discriminator
value without instantiating the object. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());
result r (db.query<person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i '=r.end (); ++i)

{

std::string d (i.discriminator ());

}...

t.commit ();

In the current implementation, ODB has limited support for customizing names, types, and values
of the extra columns. Currently, the discriminator column is always dglbeid and contains

a namespace-qualified class name (for exaniptaployee” or "hr::employee"). The id

column in the derived class table has the same name as the object id column in the root class
table. Future versions of ODB will add support for customizing these extra columns.

The sample database schema for the above polymorphic hierarchy is shown below.

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
typeid VARCHAR(255) NOT NULL,
first TEXT NOT NULL,
last TEXT NOT NULL);

CREATE TABLE employee (

id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
temporary TINYINT(1) NOT NULL,

118 C++ Object Persistence with ODB Revision 2.1, November 2012

8.2.1 Performance and Limitations

CONSTRAINT employee_id fk
FOREIGN KEY (id)
REFERENCES person (id)
ON DELETE CASCADE);

CREATE TABLE contractor (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
email TEXT NOT NULL,

CONSTRAINT contractor_id_fk
FOREIGN KEY (id)
REFERENCES person (id)
ON DELETE CASCADE);

The complete version of the code presented in this section is available inhdre
tance/polymorphism example in thedb-examples package.

8.2.1 Performance and Limitations

A database operation on a non-polymorphic object normally translates to a single database state-
ment execution (objects with containers and eager object pointers can be the exception). Because
polymorphic objects have their data members stored in multiple tables, some database operations
on such objects may result in multiple database statements being executed while others may
require more complex statements. There is also some functionality that is not available to poly-
morphic objects.

The first part of this section discusses the performance implications to keep in mind when design-
ing and working with polymorphic hierarchies. The second part talks about limitations of poly-
morphic objects.

The most important aspect of a polymorphic hierarchy that affects database performance is its
depth. The distance between the root of the hierarchy and the derived class translates directly to
the number of database statements that will have to be executed in order to persist, update, or
erase this derived class. It also translates directly to the number of@QLclauses that will be

needed to load or query the database for this derived class. As a result, to achieve best perfor-
mance, we should try to keep our polymorphic hierarchies as flat as possible.

When loading an object or querying the database for objects, ODB will need to execute two state-
ments if this object’s static and dynamic types are different but only one statement if they are the
same. This example will help illustrate the difference:

unsigned long id;

{

employee e (...);

transaction t (db.begin ());

Revision 2.1, November 2012 C++ Object Persistence with ODB 119

8.2.1 Performance and Limitations

id = db.persist (e);
t.commit ();

}
{

shared_ptr<person> p;

transaction t (db.begin ());

p = db.load<person> (id); // Requires two statement.

p = db.load<employee> (id); // Requires only one statement.
t.commit ();

}

As a result, we should try to load and query using the most derived class possible.

Finally, for polymorphic objects, erasing via the object instance is faster than erasing via its
object id. In the former case the object’s dynamic type can be determined locally in the applica-
tion while in the latter case an extra statement has to be executed to achieve the same result. Fo
example:

shared_ptr<person>p =..,;

transaction t (db.begin ());

db.erase<person> (p.id ()); // Slower (executes extra statement).
db.erase (p); /] Faster.

t.commit ();

Polymorphic objects can use all the mechanisms that are available to ordinary objects. These
include containers| (Chapter 5, "Containgrs"), object relationships, including to polymorphic
objects [(Chapter 6, "Relationships"), views (Chapter 9, "Views"), sesgion (Chaptgr 10,
['Session"), and optimistic concurrendy (Chapter 11, "Optimistic_Concurlency”). There are,
however, a few limitations, mainly due to the underlying use of SQL to access the data.

When a polymorphic object is "joined" in a view, and the join condition (either in the form of an
object pointer or a custom condition) comes from the object itself (as opposed to one of the
objects joined previously), then this condition must only use data members from the derived
class. For example, consider the following polymorphic object hierarchy and a view:

#pragma db object polymorphic
class employee

{

3

#pragma db object
class permanent_employee: public employee

{

120 C++ Object Persistence with ODB Revision 2.1, November 2012

8.2.1 Performance and Limitations

h

#pragma db object
class temporary_employee: public employee

{

shared_ptr<permanent_employee> manager_;

%

#pragma db object
class contractor: public temporary_employee

{
shared_ptr<permanent_employee> manager_;

%

#pragma db view object(permanent_employee) \
object(contractor: contractor::manager)
struct contractor_manager

{
=

This view will not function correctly because the join conditiomafager_) comes from the

base classtémporary_employee) instead of the derivecc@ntractor). The reason for

this limitation is theJOIN clause order in the underlying S@EELECT statement. In the view
presented above, the table corresponding to the basetelag®(ary_employee) will have

to be joined first which will result in this view matching both temporary_employee and
contractor objects instead of jusbntractor . It is usually possible to resolve this issue by
reordering the objects in the view. Our example, for instance, can be fixed by swapping the two
objects:

#pragma db view object(contractor) \
object(permanent_employee: contractor::manager_)
struct contractor_manager

{
=

The erase_query() database functiop (Section 3.11, "Deleting Persistent Ohjects") also has
limited functionality when used on polymorphic objects. Because many database implementa-
tions do not suppor@OIN clauses in the SQDELETEstatement, only data members from the
derived class being erased can be used in the query condition. For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 121

8.3 Mixed Inheritance

typedef odb::query<employee> query;

transaction t (db.begin ());

db.erase_query<employee> (query::permanent); // Ok.
db.erase_query<employee> (query::last == "Doe"); // Error.
t.commit ();

8.3 Mixed Inheritance

It is possible to mix the reuse and polymorphism inheritance styles in the same hierarchy. In this
case, the reuse inheritance must be used for the "bottom" (base) part of the hierarchy while the
polymorphism inheritance — for the "top"” (derived) part. For example:

#pragma db object
class person

{

3

#pragma db object polymorphic

class employee: public person // Reuse inheritance.
{

3

#pragma db object
class temporary_employee: public employee // Polymorphism inheritance.

{
=

#pragma db object
class permanent_employee: public employee // Polymorphism inheritance.

{
=

122 C++ Object Persistence with ODB Revision 2.1, November 2012

9 Views

9 Views

An ODB view is a C+4class orstruct type that embodies a light-weight, read-only projec-
tion of one or more persistent objects or database tables or the result of a native SQL query
execution.

Some of the common applications of views include loading a subset of data members from
objects or columns from database tables, executing and handling results of arbitrary SQL queries,
including aggregate queries, as well as joining multiple objects and/or database tables using
object relationships or custom join conditions.

Many relational databases also define the concept of views. Note, however, that ODB views are
not mapped to database views. Rather, by default, an ODB view is mapped to &ESELT
guery. However, if desired, it is easy to create an ODB view that is based on a database view.

Usually, views are defined in terms of other persistent entities, such as persistent objects,
database tables, sequences, etc. Therefore, before we can examine our first view, we need tc
define a few persistent objects and a database table. We will use this model in examples through-
out this chapter. Here we assume that you are familiar with ODB object relationship support
(Chapter 6, "Relationshigs").

#pragma db object
class country

{

#pragma db id
std::string code_; // ISO 2-letter country code.

std::string name_;

3

#pragma db object
class employer

{
#pragma db id
unsigned long id_;

std::string name_;

3

#pragma db object
class employee

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 123

9 Views

#pragma db id
unsigned long id_;

std::string first_;
std::string last_;

unsigned short age_;

shared_ptr<country> residence_;
shared_ptr<country> nationality_;

shared_ptr<employer> employed by ;

h

Besides these objects, we also have the legagyloyee extra table that is not mapped to
any persistent class. It has the following definition:

CREATE TABLE employee_extra(
employee_id INTEGER NOT NULL,
vacation_days INTEGER NOT NULL,
previous_employer_id INTEGER)

The above persistent objects and database table as well as many of the views shown in this
chapter are based on thiew example which can be found in thdb-examples package of
the ODB distribution.

To declare a view we use tdb view pragma, for example:

#pragma db view object(employee)
struct employee_name

{
std::string first;
std::string last;

%

The above example shows one of the simplest views that we can create. It has a single associate
object employee) and its purpose is to extract the employee’s first and last names without
loading any other data, such as the referenoedtry andemployer objects.

Views use the same query facilify (Chapter 4, "Querying the Database") as persistent objects.
Because support for queries is optional and views cannot be used without this support, you need
to compile any header that defines a view with-tgenerate-query ODB compiler option.

To query the database for a view we usedht@base::query() function in exactly the
same way as we would use it to query the database for an object. For example, the following code
fragment shows how we can find the names of all the employees that are younger than 31.:

124 C++ Object Persistence with ODB Revision 2.1, November 2012

9.1 Object Views

typedef odb::query<employee name> query;
typedef odb::result<employee name> result;

transaction t (db.begin ());
result r (db.query<employee _name> (query::age < 31));

for (result::iterator i (r.begin ()); i = r.end (); ++i)

{

const employee_name& en (*i);
cout << en.first << " " << en.last << endl;

}

t.commit ();

A view can be defined as a projection of one or more objects, one or more tables, a combination
of objects and tables, or it can be the result of a custom SQL query. The following sections
discuss each of these kinds of view in more detail.

9.1 Object Views

To associate one or more objects with a view we usdhihebject pragma|(Section 12.2.11,
['object "). We have already seen a simple, single-object view in the introduction to this
chapter. To associate the second and subsequent objects we repbatlijezt pragma for
each additional object, for example:

#pragma db view object(employee) object(employer)
struct employee_employer

{

std::string first;
std::string last;
std::string name;

3
The complete syntax of thtb object pragma is shown below:
object(name[= alias][: join-condition])

The namepart is a potentially qualified persistent class name that has been defined previously.
The optionaklias part gives this object an alias. If provided, the alias is used in several contexts
instead of the object’s unqualified name. We will discuss aliases further as we cover each of these
contexts below. The optiongin-conditionpart provides the criteria which should be used to as-
sociate this object with any of the previously associated objects or, as we wil[see in Segtion 9.3,
['Mixed Views'], tables. Note that while the first associated object can have an alias, it cannot
have a join condition.

Revision 2.1, November 2012 C++ Object Persistence with ODB 125

9.1 Object Views

For each subsequent associated object the ODB compiler needs a join condition and there are
several ways to specify it. The easiest way is to omit it altogether and let the ODB compiler try to
come up with a join condition automatically. To do this the ODB compiler will examine each
previously associated object for object relationships (Chapter 6, "Relatiopships") that may exist
between these objects and the object being associated. If such a relationship exists and is unam
biguous, that is there is only one such relationship, then the ODB compiler will automatically use

it to come up with the join condition for this object. This is exactly what happens in the previous
example: there is a single relationsh&mployee::employed by) between themployee
andemployer objects.

On the other hand, consider this view:

#pragma db view object(employee) object(country)
struct employee_residence

{

std::string first;
std::string last;
std::string name;

%

While there is a relationship betweeonuntry andemployee , it is ambiguous. It can be
employee::residence_ (which is what we want) or it can leenployee::national-

ity (which we don’t want). As result, when compiling the above view, the ODB compiler will
issue an error indicating an ambiguous object relationship. To resolve this ambiguity, we can
explicitly specify the object relationship that should be used to create the join condition as the
name of the corresponding data member. Here is how we can fxmjbleyee_residence

view:

#pragma db view object(employee) object(country: employee::residence)
struct employee_residence

{

std::string first;
std::string last;
std::string name;

3

It is possible to associate the same object with a single view more than once using different join
conditions. However, in this case, we have to use aliases to assign different names for each asso
ciation. For example:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country

{
=

126 C++ Object Persistence with ODB Revision 2.1, November 2012

9.1 Object Views

Note that correctly defining data members in this view requires the use of a mechanism that we
haven't yet covered. We will see how to do this shortly.

If we assign an alias to an object and refer to a data member of this object in one of the join
conditions, we have to use the unqualified alias name instead of the potentially qualified object
name. For example:

#pragma db view object(employee = ee) object(country: ee::residence)
struct employee_residence

{
=

The last way to specify a join condition is to provide a custom query expression. This method is
primarily useful if you would like to associate an object using a condition that does not involve an
object relationship. Consider, for example, a modigetployee object from the beginning of

the chapter with an added country of birth member. For one reason or another we have decided
not to use a relationship to theuntry object, as we have done with residence and nationality.

#pragma db object
class employee

{

std::string birth_place_; // Country name.

3

If we now want to create a view that returns the birth country code for an employee, then we have
to use a custom join condition when associatingcthatry object. For example:

#pragma db view object(employee) \
object(country: employee::birth_place_ == country::name_)
struct employee_birth_code

{

std::string first;
std::string last;
std::string code;

3

The syntax of the query expression in custom join conditions is the same as in the query facility
used to query the database for objdgcts (Chapter 4, "Querying the Dgtabase") except that for query
members, instead of usingdb::query<object>::member names, we refer directly to

object members.

Looking at the views we have defined so far, you may be wondering how the ODB compiler
knows which view data members correspond to which object data members. While the names are
similar, they are not exactly the same, for examplaployee name::first and

Revision 2.1, November 2012 C++ Object Persistence with ODB 127

9.1 Object Views

employee::first_

As with join conditions, when it comes to associating data members, the ODB compiler tries to
do this automatically. It first searches all the associated objects for an exact name match. If no
match is found, then the ODB compiler compares the so-called public names. A public name of a
member is obtained by removing the common member name decorations, such as leading and
trailing underscores, tha_ prefix, etc. In both of these searches the ODB compiler also makes
sure that the types of the two members are the same or compatible.

If one of the above searches returned a match and it is unambiguous, that is there is only one
match, then the ODB compiler will automatically associate the two members. On the other hand,
if no match is found or the match is ambiguous, the ODB compiler will issue an error. To asso-
ciate two differently-named members or to resolve an ambiguity, we can explicitly specify the
member association using ttle column pragma|(Section 12.4.%cdlumn "). For example:

#pragma db view object(employee) object(employer)
struct employee_employer
{

std::string first;

std::string last;

#pragma db column(employer::name_)
std::string employer_name;

%

If an object data member specifies the SQL type withdihéype pragma|(Section 12.4.8,
"type "), then this type is also used for the associated view data members.

Note also that similar to join conditions, if we assign an alias to an object and refer to a data
member of this object in one of tlk column pragmas, then we have to use the unqualified
alias name instead of the potentially qualified object name. For example:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country
{
std::string first;
std::string last;

#pragma db column(res_country::name_)
std::string res_country_name;

#pragma db column(nat_country::name_)
std::string nat_country_name;

%

128 C++ Object Persistence with ODB Revision 2.1, November 2012

9.1 Object Views

Besides specifying just the object member, we can also specHyexpressionin the

db column pragma. A +-expression consists of string literals and object member references
connected using the operator. It is primarily useful for defining aggregate views based on SQL
aggregate functions, for example:

#pragma db view object(employee)
struct employee_count

{
#pragma db column("count(" + employee::id_ +")")
std::size_t count;

3

When querying the database for a view, we may want to provide additional query criteria based
on the objects associated with this view. To support this a view defines query members for all the
associated objects which allows us to refer to such objectss members using the
odb::query<view>::member expressions. This is similar to how we can refer to object
members using theodb::query<object>::member expressions when querying the
database for an object. For example:

typedef odb::result<employee_count> result;
typedef odb::query<employee_count> query;

transaction t (db.begin ());

/I Find the number of employees with the Doe last name.
I
result r (db.query<employee_count> (query::last == "Doe"));

/I Result of this aggregate query contains only one element.
I
cout << r.begin ()->count << endl;

t.commit ();

In the above query we used the last name data member from the assoujait®be object to
only count employees with the specific name.

When a view has only one associated object, the query members corresponding to this object are
defined directly in theodb::query<view> scope. For instance, in the above example, we
referred to the last name membeiodb::query<employee_count>::last . However, if

a view has multiple associated objects, then query members corresponding to each such object are
defined in a nested scope named after the object. As an example, consider the
employee_employer view again:

Revision 2.1, November 2012 C++ Object Persistence with ODB 129

9.1 Object Views

#pragma db view object(employee) object(employer)
struct employee_employer

{
std::string first;
std::string last;

#pragma db column(employer::name_)
std::string employer_name;

%

Now, to refer to the last name data member from éhneployee object we use the
odb::query<...>::employee::last expression. Similarly, to refer to the employer
name, we use thadb::query<...>::employer::name expression. For example:

typedef odb::result<employee_employer> result;
typedef odb::query<employee employer> query;

transaction t (db.begin ());
result r (db.query<employee_employer> (
qguery::employee::last == "Doe" &&

query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i !'=r.end (); ++i)
cout << j->first << " " << j->last << " " << i->employer_name << endl;

t.commit ();

If we assign an alias to an object, then this alias is used to name the query members scope insteas
of the object name. As an example, consideethployee_country view again:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country
{
k

And a query which returns all the employees that have the same country of residence and nation-
ality:

typedef odb::query<employee_country> query;
typedef odb::result<employee_country> result;

transaction t (db.begin ());

result r (db.query<employee_country> (
query::res_country::name == query::nat_country::name));

130 C++ Object Persistence with ODB Revision 2.1, November 2012

9.2 Table Views

for (result::iterator i (r.begin ()); i = r.end (); ++i)
cout << i->first << " " << j->last << " " << i->res_country_name << endl;

t.commit ();

Note also that unlike object query members, view query members do no support referencing
members in related objects. For example, the following query is invalid:

typedef odb::query<employee name> query;
typedef odb::result<employee _name> result;

transaction t (db.begin ());

result r (db.query<employee_name> (
query::employed_by->name == "Simple Tech Ltd"));

t.commit ();

To get this behavior, we would instead need to associatentpéoyer object with this view
and then use thguery::employer::name expression instead of
guery::employed_by->name

As we have discussed above, if specified, an object alias is used instead of the object name in the
join condition, data member references indbecolumn pragma, as well as to name the query
members scope. The object alias is also used as a table name alias in the urBlELIEGCT
statement generated by the ODB compiler. Normally, you would not use the table alias directly
with object views. However, if for some reason you need to refer to a table column directly, for
example, as part of a native query expression, and you need to qualify the column with the table,
then you will need to use the table alias instead.

9.2 Table Views

A table view is similar to an object view except that it is based on one or more database tables
instead of persistent objects. Table views are primarily useful when dealing with ad-hoc tables
that are not mapped to persistent classes.

To associate one or more tables with a view we usalliitable pragma [(Section 12.2.P,
['table). To associate the second and subsequent tables we repdhttédide pragma for
each additional table. For example, the following view is based omrtioyee extra
legacy table we have defined at the beginning of the chapter.

Revision 2.1, November 2012 C++ Object Persistence with ODB 131

9.2 Table Views

#pragma db view table("employee_extra")
struct employee_vacation

{
#pragma db column("employee_id") type("INTEGER")
unsigned long employee id;

#pragma db column("vacation_days") type("INTEGER")
unsigned short vacation_days;

%

Besides the table name in tikb table pragma we also have to specify the column name for
each view data member. Note that unlike for object views, the ODB compiler does not try to
automatically come up with column names for table views. Furthermore, we cannot use refer-
ences to object members either, since there are no associated objects in table views. Instead, th
actual column name or column expression must be specified as a string literal. The column name
can also be qualified with a table name either if'thigle.column” form or, if either a table

or a column name contains a period, in'ttadle"."column” form. The following example
illustrates the use of a column expression:

#pragma db view table("employee_extra")
struct employee_max_vacation

{
#pragma db column("max(vacation_days)") type("INTEGER")

unsigned short max_vacation_days;

3

Both the asociated table names and the column names can be qualified with a database scheme
for example:

#pragma db view table("hr.employee_extra™)
struct employee_max_vacation

{
#pragma db column("hr.employee_extra.vacation_days") type("INTEGER")

unsigned short vacation_days;

3

For more information on database schemas and the format of the qualified names], refer o Section
[12.1.8, 5chema"}

Note also that in the above examples we specified the SQL type for each of the columns to make
sure that the ODB compiler has knowledge of the actual types as specified in the database
schema. This is required to obtain correct and optimal generated code.

The complete syntax of thdb table pragma is similar to thdb object pragma and is
shown below:

132 C++ Object Persistence with ODB Revision 2.1, November 2012

9.2 Table Views

table(" name" [= "alias"][: join-condition])

The namepart is a database table name. The optiafiab part gives this table an alias. If
provided, the alias must be used instead of the table whenever a reference to a table is used
Contexts where such a reference may be needed include the join condition (discussed below),
column names, and query expressions. The optimmacondition part provides the criteria

which should be used to associate this table with any of the previously associated tables or, as we
will see in[Section 9.3, "Mixed Viewss", objects. Note that while the first associated table can
have an alias, it cannot have a join condition.

Similar to object views, for each subsequent associated table the ODB compiler needs a join
condition. However, unlike for object views, for table views the ODB compiler does not try to
come up with one automatically. Furthermore, we cannot use references to object members corre-
sponding to object relationships either, since there are no associated objects in table views.
Instead, for each subsequent associated table, a join condition must be specified as a custom
guery expression. While the syntax of the query expression is the same as in the query facility
used to query the database for objgcts (Chapter 4, "Querying the Dgtabase"), a join condition for
a table is normally specified as a single string literal containing a native SQL query expression.

As an example of a multi-table view, consider émeployee health table that we define in
addition toemployee_extra

CREATE TABLE employee_health(
employee_id INTEGER NOT NULL,
sick_leave _days INTEGER NOT NULL)

Given these two tables we can now define a view that returns both the vacation and sick leave
information for each employee:

#pragma db view table("employee_extra" = "extra") \
table("employee_health" = "health": \
"extra.employee_id = health.employee_id")
struct employee_leave
{
#pragma db column(“extra.employee_id") type("INTEGER")
unsigned long employee_id;

#pragma db column("vacation_days") type("INTEGER")
unsigned short vacation_days;

#pragma db column("sick_leave_days") type("INTEGER")
unsigned short sick_leave_days;

Revision 2.1, November 2012 C++ Object Persistence with ODB 133

9.3 Mixed Views

Querying the database for a table view is the same as for an object view except that we can only
use native query expressions. For example:

typedef odb::query<employee _leave> query;
typedef odb::result<employee_leave> result;

transaction t (db.begin ());

unsigned shortv_min = ...
unsigned short|_min = ...

result r (db.query<employee_leave> (
"vacation_days > " + query::_val(v_min) + "AND"
"sick_leave_days > " + query::_val(l_min)));

t.commit ();

9.3 Mixed Views

A mixed view has both associated objects and tables. As a first example of a mixed view, let us
improve employee_vacation from the previous section to return the employee’s first and
last names instead of the employee id. To achieve this we have to associate botpldlyee

object and themployee _extra table with the view:

#pragma db view object(employee) \
table("employee_extra" = "extra": "extra.employee_id =" + employee::id)
struct employee_vacation

{
std::string first;
std::string last;

#pragma db column(“extra.vacation_days") type("INTEGER")
unsigned short vacation_days;

%

When querying the database for a mixed view, we can use query members for the parts of the
qguery expression that involves object members but have to fall back to using the native syntax for
the parts that involve table columns. For example:

typedef odb::query<employee_ vacation> query;
typedef odb::result<employee_vacation> result;

transaction t (db.begin ());

result r (db.query<employee_vacation> (
(query::last == "Doe") + "AND extra.vacation_days <> 0"));

134 C++ Object Persistence with ODB Revision 2.1, November 2012

9.4 View Query Conditions

for (result::iterator i (r.begin ()); i = r.end (); ++i)
cout << i->first << " " << j->last << " " << |->vacation_days << endl;

t.commit ();

As another example, consider a more advanced view that associates two objects via a legacy
table. This view allows us to find the previous employer name for each employee:

#pragma db view object(employee) \
table("employee_extra" = "extra": "extra.employee_id =" + employee::id)\
object(employer: "extra.previous_employer_id =" + employer::id_)
struct employee_prev_employer
{
std::string first;
std::string last;

II'If previous_employer_id is NULL, then the name will be NULL as well.
/' We use the odb::nullable wrapper to handle this.

I

#pragma db column(employer::name_)

odb::nullable<std::string> prev_employer_name;

h

9.4 View Query Conditions

Object, table, and mixed views can also specify an optional query condition that should be used
whenever the database is queried for this view. To specify a query condition we use the
db query pragma|(Section 12.2.ydery).

As an example, consider a view that returns some information about all the employees that are
over a predefined retirement age. One way to implement this would be to define a standard object
view as we have done in the previous sections and then use a query like this:

result r (db.query<employee_retirement> (query::age > 50));

The problem with the above approach is that we have to keep repeatipgetijeage >
50 expression every time we execute the query, even though this expression always stays the
same. View query conditions allow us to solve this problem. For example:

#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement

{

std::string first;

std::string last;

unsigned short age;

%

Revision 2.1, November 2012 C++ Object Persistence with ODB 135

9.4 View Query Conditions

With this improvement we can rewrite our query like this:

result r (db.query<employee_retirement> ());

But what if we may also need to restrict the result set based on some varying criteria, such as the
employee’s last name? Or, in other words, we may need to combine a constant query expression
specified in thedb query pragma with the varying expression specified at the query execution
time. To allow this, thelb query pragma syntax supports the use of the spé@)al place-

holder that indicates the position in the constant query expression where the runtime expression
should be inserted. For example:

#pragma db view object(employee) query(employee::age > 50 && (?))
struct employee_retirement

{

std::string first;
std::string last;
unsigned short name;

}1
With this change we can now use additional query criteria in our view:

result r (db.query<employee_retirement> (query::last == "Doe"));

The syntax of the expression in a query condition is the same as in the query facility used to

qguery the database for objedts (Chapter 4, "Querying the Database") except for two differences.
Firstly, for query members, instead of usiodb::query<object>::member names, we

refer directly to object members, using the object alias instead of the object name if an alias was
assigned. Secondly, query conditions support the sg@g¢iaplaceholder which can be used both

in the C++-integrated query expressions as was shown above and in native SQL expressions
specified as string literals. The following view is an example of the latter case:

#pragma db view table("employee_extra") \
query("vacation_days <> 0 AND (?)")
struct employee_vacation

{
=

Another common use case for query conditions are views wit@RI2ER BYor GROUP BY

clause. Such clauses are normally present in the same form in every query involving such views.
As an example, consider an aggregate view which calculate the minimum and maximum ages of
employees for each employer:

#pragma db view object(employee) object(employer) \
query ((?) + "GROUP BY" + employer::name_)
struct employer_age

{

136 C++ Object Persistence with ODB Revision 2.1, November 2012

9.5 Native Views

#pragma db column(employer::name_)
std::string employer_name;

#pragma db column("min(" + employee::age_ +")")
unsigned short min_age;

#pragma db column("max(" + employee::age_ +")")
unsigned short max_age;

%

9.5 Native Views

The last kind of view supported by ODB is a native view. Native views are a low-level mecha-
nism for capturing results of native SQL queries. Native views don’'t have associated tables or
objects. Instead, we use ttile query pragma to specify the native SQL query, which must at a
minimum include the select-list and, if applicable, the from-list. For example, here is how we can
re-implement themployee_vacation table view from Section 9.2 above as a native view:

#pragma db view query("SELECT employee _id, vacation_days "\
"FROM employee_extra")
struct employee_vacation

{
#pragma db type("INTEGER")

unsigned long employee id;

#pragma db type("INTEGER")
unsigned short vacation_days;

%

In native views the columns in the query select-list are associated with the view data members in
the order specified. That is, the first column is stored in the first member, the second column —

in the second member, and so on. The ODB compiler does not perform any error checking in this
association. As a result you must make sure that the number and order of columns in the query
select-list match the number and order of data members in the view. This is also the reason why
we are not required to provide the column name for each data member in native views, as is the
case for object and table views.

Note also that while it is always possible to implement a table view as a native view, the table

views must be preferred since they are safer. In a native view, if you add, remove, or rearrange
data members without updating the column list in the query, or vice versa, at best, this will result

in a runtime error. In contrast, in a table view such changes will result in the query being auto-

matically updated.

Similar to object and table views, the query specified for a native view can contain the special
(?) placeholder which is replaced with the query expression specified at the query execution
time. If the native query does not contain a placeholder, as in the example above, then any query

Revision 2.1, November 2012 C++ Object Persistence with ODB 137

9.5 Native Views

expression specified at the query execution time is appended to the query text along with the
WHERKeyword, if required. The following example shows the usage of the placeholder:

#pragma db view query("SELECT employee _id, vacation_days "\
"FROM employee_extra "\
"WHERE vacation_days <> 0 AND (?)")

struct employee_vacation

{
3
As another example, consider a view that returns the next value of a database sequence:

#pragma db view query("SELECT nextval('my_seq’)")
struct sequence_value

{
unsigned long long value;

3

While this implementation can be acceptable in some cases, it has a number of drawbacks.
Firstly, the name of the sequence is fixed in the view, which means if we have a second sequence,
we will have to define another, almost identical view. Similarly, the operation that we perform on
the sequence is also fixed. In some situations, instead of returning the next value, we may need
the last value.

Note that we cannot use the placeholder mechanism to resolve these problems since placeholder:
can only be used in th& HEREGROUP BY and similar clauses. In other words, the following
won’t work:

#pragma db view query("SELECT nextval(’(?)")")
struct sequence_value

{
unsigned long long value;

3

result r (db.query<sequence_value> ("my_seq"));

To support these kinds of use cases, ODB allows us to specify the complete query for a native
view at runtime rather than at the view definition. To indicate that a native view has a runtime
guery, we can either specify the empty query pragma or omit the pragma altogether. For
example:

#pragma db view
struct sequence_value

{
unsigned long long value;

%

138 C++ Object Persistence with ODB Revision 2.1, November 2012

9.6 Other View Features and Limitations

Given this view, we can perform the following queries:

typedef odb::query<sequence_value> query;
typedef odb::result<sequence_value> result;

string seq_name = ...

result | (db.query<sequence_value> (
"SELECT lastval(’™ + seq_name + ")"));

result n (db.query<sequence_value> (
"SELECT nextval(™ + seq_name + ")"));

9.6 Other View Features and Limitations

Views cannot be derived from other views. However, you can derive a view from a transient C++
class. View data members cannot be object pointers. If you need to access data from a pointed-to
object, then you will need to associate such an object with the view. Similarly, view data
members cannot be containers. These two limitations also apply to composite value types that
contain object pointers or containers. Such composite values cannot be used as view data
members.

On the other hand, composite values that do not contain object pointers or containers can be usec
in views. As an example, consider a modified version ofetinployee persistent class that
stores a person’s name as a composite value:

#pragma db value
class person_name

{
std::string first_;
std::string last_;

%

#pragma db object
class employee

{

person_name name_;

};...

Given this change, we can re-implementéhgloyee _name view like this:

Revision 2.1, November 2012 C++ Object Persistence with ODB 139

9.6 Other View Features and Limitations

#pragma db view object(employee)
struct employee_name

person_name name;

%

It is also possible to extract some or all of the nested members of a composite value into individ-
ual view data members. Here is how we could have definedntipboyee _name view if we
wanted to keep its original structure:

#pragma db view object(employee)
struct employee_name

{

#pragma db column(employee::name.first_)
std::string first;

#pragma db column(employee::name.last)

std::string last;

3

140 C++ Object Persistence with ODB Revision 2.1, November 2012

10 Session

10 Session

A session is an application’s unit of work that may encompass several database transactions. In
this version of ODB a session is just an object cache. In future versions it will provide additional
functionality, such as automatic object state change tracking.

Session support is optional and can be enabled or disabled on the per object basis using the
db session pragma, for example:

#pragma db object session
class person

{
J3
We can also enable or disable session support for a group of objects at the namespace level:

#pragma db namespace session
namespace accounting

{
#pragma db object /I Session support is enabled.
class employee

{
=

#pragma db object session(false) // Session support is disabled.
class employer

{

=
}

Finally, we can pass thegenerate-session ODB compiler option to enable session
support by default. With this option session support will be enabled for all the persistent classes
except those for which it was explicitly disabled usingdhesession . An alternative to this
method with the same effect is to enable session support for the global namespace:

#pragma db namespace() session

Each thread of execution in an application can have only one active session at a time. A session is
started by creating an instance of tb::session class and is automatically terminated
when this instance is destroyed. You will need to include<tiab/session.hxx> header

file to make this class available in your application. For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 141

10 Session

#include <odb/database.hxx>
#include <odb/session.hxx>
#include <odb/transaction.hxx>

using namespace odb::core;

{

session s;

/I First transaction.
I

{
transaction t (db.begin ());

t.commit ();

}

/I Second transaction.
I

{
transaction t (db.begin ());

t.commit ();

}

/I Session 's’ is terminated here.

}
Thesession class has the following interface:

namespace odb

{

class session

public:
session (bool make_current = true);
~session ();

/I Copying or assignment of sessions is not supported.
I
private:
session (const session&);
session& operator= (const session&);

/I Current session interface.
1
public:
static session&
current ();

static bool

142 C++ Object Persistence with ODB

Revision 2.1, November 2012

10 Session

has_current ();

static void
current (session&);

static void
reset_current ();

/I Object cache interface.
I
public:
typedef odb::database database_type;

template <typename T>

void

insert (database_type&,
const object_traits<T>::id_typeg&,
const object_traits<T>::pointer_type&);

template <typename T>
object_traits<T>::pointer_type
find (database_type&, const object_traits<T>::id_type&) const;

template <typename T>
void
erase (database_typeg&, const object_traits<T>::id_type&);
3
}

The session constructor creates a new session and,nfake current argument igrue ,

sets it as a current session for this thread. If we try to make a session current while there is
already another session in effect for this thread, then the constructor throws the
odb::already in_session exception. The destructor clears the current session for this
thread if this session is the current one.

The staticcurrent() accessor returns the currently active session for this thread. If there is no
active session, this function throws tbdb::not_in_session exception. We can check
whether there is a session in effect in this thread usinigahecurrent() static function.

The staticcurrent() modifier allows us to set the current session for this thread. The
reset_current() static function clears the current session. These two functions allow for
more advanced use cases, such as multiplexing two or more sessions on the same thread.

We normally don’t use the object cache interface directly. However, it could be useful in some
cases, for example, to find out whether an object has already been loaded.

Revision 2.1, November 2012 C++ Object Persistence with ODB 143

10.1 Object Cache

10.1 Object Cache

A session is an object cache. Every time a session-enabled object is made persistent by calling the
database::persist() function [Section 3.8, "Making Objects Persistent"), loaded by
calling thedatabase::load() or database::find() function [Section 3.9, "Loading
[Persistent Objects"), or loaded by iterating over a query result (Section 4.4, "Query| Result"), the
pointer to the persistent object, in the form of the canonical object pginter (Section 3.3,|"Object
[and View Pointerg"), is stored in the session. For as long as the session is in effect, any subse-
guent calls to load the same object will return the cached instance. When an object’s state is
deleted from the database with ttiatabase::erase() function [Section 3.11, "Deleting
[Persistent Objects"), the cached object pointer is removed from the session. For example:

shared_ptr<person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long id (db.persist (p)); Il p is cached in s.
shared_ptr<person> p1 (db.load<person> (id)); / p1 same as p.

t.commit ();

The per-object caching policies depend on the object pointer|kind (Section 6.5, "Using|Custom
[Smart Pointer$"). Objects with a unique pointer, such sd::auto ptr or
std::unique_ptr , a@s an object pointer are never cached since it is not possible to have two
such pointers pointing to the same object. When an object is persisted via a pointer or loaded as a
dynamically allocated instance, objects with both raw and shared pointers as object pointers are
cached. If an object is persisted as a reference or loaded into a pre-allocated instance, the object i
only cached if its object pointer is a raw pointer.

Also note that when we persist an object as a constant reference or constant pointer, the sessior
caches such an object as unrestricted @gwist). This can lead to undefined behavior if the
object being persisted was actually createdaast and is later found in the session cache and
used as nomenst . As a result, when using sessions, it is recommended that all persistent
objects be created as noanst instances. The following code fragment illustrates this point:

void save (database& db, shared_ptr<const person> p)

{
transaction t (db.begin ());

db.persist (p); // Persisted as const pointer.
t.commit ();

}

session s;

shared_ptr<const person> p1 (new const person ("John", "Doe");

144 C++ Object Persistence with ODB Revision 2.1, November 2012

10.1 Object Cache

unsigned long id1 (save (db, pl)); / plis cached in s as non-const.

{
transaction t (db.begin ());

shared_ptr<person> p (db.load<person> (id1)); // p == p1
p->age (30); // Undefined behavior since pl was created const.
t.commit ();

}

shared_ptr<const person> p2 (new person ("Jane", "Doe"));
unsigned long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
transaction t (db.begin ());

shared_ptr<person> p (db.load<person> (id2)); // p == p2
p->age (30); // Ok, since p2 was not created const.
t.commit ();

}

Revision 2.1, November 2012 C++ Object Persistence with ODB 145

11 Optimistic Concurrency

11 Optimistic Concurrency

The ODB transaction model (Section 3.5, "Transactjons") guarantees consistency as long as we
perform all the database operations corresponding to a specific application transaction in a single
database transaction. That is, if we load an object within a database transaction and update it in
the same transaction, then we are guaranteed that the object state that we are updating in the
database is exactly the same as the state we have loaded. In other words, it is impossible for
another process or thread to modify the object state in the database between these load and updat
operations.

In this chapter we use the teapplication transactiorio refer to a set of operations on persistent
objects that an application needs to perform in order to implement some application-specific
functionality. The terndatabase transactionefers to the set of database operations performed
between the ODBegin() andcommit() calls. Up until now we have treated application
transactions and database transactions as essentially the same thing.

While this model is easy to understand and straightforward to use, it may not be suitable for
applications that have long application transactions. The canonical example of such a situation is
an application transaction that requires user input between loading an object and updating it. Such
an operation may take an arbitrary long time to complete and performing it within a single
database transaction will consume database resources as well as prevent other processes/threa
from updating the object for too long.

The solution to this problem is to break up the long-lived application transaction into several
short-lived database transactions. In our example that would mean loading the object in one
database transaction, waiting for user input, and then updating the object in another database
transaction. For example:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

cerr << "enter age for " << p.first () <<" " << p.last () << endl;
unsigned short age;

cin >> age;

p.age (age);

{

146 C++ Object Persistence with ODB Revision 2.1, November 2012

11 Optimistic Concurrency

transaction t (db.begin ());
db.update (p);
t.commit ();

}

This approach works well if we only have one process/thread that can ever update the object.
However, if we have multiple processes/threads modifying the same object, then this approach
does not guarantee consistency anymore. Consider what happens in the above example if anothe
process updates the person’s last name while we are waiting for the user input. Since we loaded
the object before this change occured, our version of the person’s data will still have the old
name. Once we receive the input from the user, we go ahead and update the object, overwriting
both the old age with the new one (correct) and the new name with the old one (incorrect).

While there is no way to restore the consistency guarantee in an application transaction that
consists of multiple database transactions, ODB provides a mechanism, called optimistic concur-
rency, that allows applications to detect and potentially recover from such inconsistencies.

In essence, the optimistic concurrency model detects mismatches between the current object state
in the database and the state when it was loaded into the application memory. Such a mismatch
would mean that the object was changed by another process or thread. There are several ways i«
implement such state mismatch detection. Currently, ODB uses object versioning while other
methods, such as timestamps, may be supported in the future.

To declare a persistent class with the optimistic concurrency model we usptithestic
pragma/((Section 12.1.508timistic). We also use theersion pragma((Section 12.4.15,
"version ") to specify which data member will store the object version. For example:

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

3

The version data member is managed by ODB. It is initializetl ¥ehen the object is made
persistent and incremented bywith each update. The version value is not used by ODB and

the application can use it as a special value, for example, to indicate that the object is transient.
Note that for optimistic concurrency to function properly, the application should not modify the
version member after making the object persistent or loading it from the database and until delet-
ing the state of this object from the database. To avoid any accidental modifications to the version
member, we can declarecibnst , for example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 147

11 Optimistic Concurrency

#pragma db object optimistic
class person

{

#pragma db version
const unsigned long version_;

%

When we call thedatabase::update() function [Section 3.10, "Updating Persistent
[Objects]) and pass an object that has an outdated stapelathebject_changed exception

is thrown. At this point the application has two recovery options: it can abort and potentially
restart the application transaction or it can reload the new object state from the database, re-apply
or merge the changes, and agtidate() again. Note that aborting an application transaction

that performs updates in multiple database transactions may require reverting changes that have
already been committed to the database. As a result, this strategy works best if all the updates are
performed in the last database transaction of the application transaction. This way the changes
can be reverted by simply rolling back this last database transaction.

The following example shows how we can reimplement the above transaction using the second
recovery option:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

cerr << "enter age for " << p.first () <<" " << p.last () << endl;
unsigned short age;

cin >> age;

p.age (age);

{
transaction t (db.begin ());

try
{
db.update (p);

}

catch (const object_changed&)

{
db.reload (p);

p.age (age);
db.update (p);

148 C++ Object Persistence with ODB Revision 2.1, November 2012

11 Optimistic Concurrency

}

t.commit ();

}

An important point to note in the above code fragment is that the sapdate() call cannot
throw theobject_changed exception because we are reloading the state of the object and
updating it within the same database transaction.

Depending on the recovery strategy employed by the application, an application transaction with
a failed update can be significantly more expensive than a successful one. As a result, optimistic
concurrency works best for situations with low to medium contention levels where the majority
of the application transactions complete without update conflicts. This is also the reason why this
concurrency model is called optimistic.

In addition to updates, ODB also performs state mismatch detection when we are deleting an
object from the databasge (Section 3.11, "Deleting Persistent Opjects"). To understand why this
can be important, consider the following application transaction:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

string answer;
cerr << "age is " << p.age () << ", delete?" << endl;
getline (cin, answer);

if (answer == "yes")

{
transaction t (db.begin ());

db.erase (p);
t.commit ();

}

Consider again what happens if another process or thread updates the object by changing the
person’s age while we are waiting for the user input. In this case, the user makes the decision
based on a certain age while we may delete (or not delete) an object that has a completely differ-
ent age. Here is how we can fix this problem using optimistic concurrency:

unsigned long id = ...;
person p;

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 149

11 Optimistic Concurrency

transaction t (db.begin ());
db.load (id, p);
t.commit ();

}

string answer;
for (bool done (false); !done;)

{
if (answer.empty ())
cerr << "age is " << p.age () << ", delete?" << endl;
else
cerr << "age changed to " << p.age () << ", still delete?" << end];

getline (cin, answer);

if (answer == "yes")

{
transaction t (db.begin ());

try

{
db.erase (p);
done = true;

}

catch (const object_changed&)

db.reload (p);
}

t.commit ();

}

else
done = true;

}

Note that state mismatch detection is performed only if we delete an object by passing the object
instance to therase() function. If we want to delete an object with the optimistic concurrency
model regardless of its state, then we need to user#ise() function that deletes an object
given its id, for example:

{
transaction t (db.begin ());

db.erase (p.id ());
t.commit ();

}

Finally, note that for persistent classes with the optimistic concurrency model both the
update() function as well as therase() function that accepts an object instance as its argu-
ment no longer throw thebject_not_persistent exception if there is no such object in

the database. Instead, this condition is treated as a change of object state and the

150 C++ Object Persistence with ODB Revision 2.1, November 2012

11 Optimistic Concurrency

object changed exception is thrown instead.

For complete sample code that shows how to use optimistic concurrency, referofiithe
mistic example in th@db-examples package.

Revision 2.1, November 2012 C++ Object Persistence with ODB 151

12 ODB Pragma Language

12 ODB Pragma Language

As we have already seen in previous chapters, ODB uses a pragma-based language to capture
database-specific information about C++ types. This chapter describes the ODB pragma language
in more detail. It can be read together with other chapters in the manual to get a sense of what
kind of configurations and mapping fine-tuning are possible. You can also use this chapter as a
reference at a later stage.

An ODB pragma has the following syntax:
#pragmadb qualifier [specifier specifier ..]

The qualifier tells the ODB compiler what kind of C++ construct this pragma describes. Valid
qualifiers areobject , view , value , member, namespace, index , andmap. A pragma

with the object qualifier describes a persistent object type. It tells the ODB compiler that the
C++ class it describes is a persistent class. Similarly, pragmas witiethe qualifier describe

view types, thevalue qualifier describes value types and timember qualifier is used to
describe data members of persistent object, view, and value typesafilespace qualifier is

used to describe common properties of objects, views, and value types that belong to a C++
namespace. Thendex qualifier defines a database index. And, finally, thap qualifier
describes a mapping between additional database types and types for which ODB provides
built-in support.

The specifierinforms the ODB compiler about a particular database-related property of the C++
declaration. For example, thd member specifier tells the ODB compiler that this member
contains this object’s identifier. Below is the declaration ofpxson class that shows how we

can use ODB pragmas:

#pragma db object
class person

{

private:
#pragma db member id
unsigned long id_;

};...

In the above example we don’t explicitly specify which C++ class or data member the pragma
belongs to. Rather, the pragma applies to a C++ declaration that immediately follows the pragma.
Such pragmas are callpdsitioned pragmadn positioned pragmas that apply to data members,
themember qualifier can be omitted for brevity, for example:

152 C++ Object Persistence with ODB Revision 2.1, November 2012

12 ODB Pragma Language

#pragma db id
unsigned long id_;

Note also that if the C++ declaration immediately following a position pragma is incompatible
with the pragma qualifier, an error will be issued. For example:

#pragma db object // Error: expected class instead of data member.
unsigned long id_;

While keeping the C++ declarations and database declarations close together eases maintenanc:
and increases readability, we can also place them in different parts of the same header file or even
factor them to a separate file. To achieve this we use the so cafteetl pragmadJnlike posi-

tioned pragmas, named pragmas explicitly specify the C++ declaration to which they apply by
adding the declaration name after the pragma qualifier. For example:

class person

{

private:
unsigned long id_;

};...

#pragma db object(person)
#pragma db member(person::id) id

Note that in the named pragmas for data memberm#mber qualifier is no longer optional.
The C++ declaration name in the named pragmas is resolved using the standard C++ name reso-
lution rules, for example:

namespace db

{

class person
{
private:
unsigned long id_;

.
}

namespace db

{

#pragma db object(person) // Resolves db::person.

}

#pragma db member(db::person::id_) id

Revision 2.1, November 2012 C++ Object Persistence with ODB 153

12 ODB Pragma Language

As another example, the following code fragment shows how to use the named value type pragma
to map a C++ type to a native database type:

#pragma db value(bool) type("INT")

#pragma db object
class person

{

private:
bool married_; // Mapped to INT NOT NULL database type.

};...

If we would like to factor the ODB pragmas into a separate file, we can include this file into the
original header file (the one that defines the persistent types) usi#ntthede directive, for
example:

/I person.hxx

class person

{
=

#ifdef ODB_COMPILER
include "person-pragmas.hxx"
#endif

Alternatively, instead of using th#include directive, we can use theodb-epilogue
option to make the pragmas known to the ODB compiler when compiling the original header file,
for example:

--odb-epilogue '#include "person-pragmas.hxx"
The following sections cover the specifiers applicable to all the qualifiers mentioned above.

The C++ header file that defines our persistent classes and normally contains one or more ODB
pragmas is compiled by both the ODB compiler to generate the database support code and the
C++ compiler to build the application. Some C++ compilers issue warnings about pragmas that
they do not recognize. There are several ways to deal with this problem which are covered at the
end of this chapter |n Section 12.8, "C++ Compiler Warn|ngs".

154 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1 Object Type Pragmas

12.1 Object Type Pragmas

A pragma with theobject qualifier declares a C++ class as a persistent object type. The quali-
fier can be optionally followed, in any order, by one or more specifiers summarized in the table
below:

Specifier Summary Section
table table name for a persistent class
pointer pointer type for a persistent class 12.1.2
abstract persistent class is abstract
readonly persistent class is read-only
optimistic persistent class with the optimistic concurrency model |[12.1.5%
no_id persistent class has no object id 12.1.6
callback database operations callback
schema database schema for a persistent class 12.1.%
polymorphic persistent class is polymorphic 12.1.9
session enable/disable session support for a persistent class
definition definition location for a persistent class
transient all non-virtual data members in a persistent class are tral|12.1.12
12.1.1table

Thetable specifier specifies the table name that should be used to store objects of the persistent

class in a relational database. For example:

#pragma db object table("people™)
class person

{
=

If the table name is not specified, the class name is used as the table name. The table name can b
gualified with a database schema, for example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 155

12.1.2 pointer

#pragma db object table("census.people™)
class person

{
=

For more information on database schemas and the format of the qualified names], refer o Section
[12.1.8, 5chema"}

12.1.2pointer

The pointer specifier specifies the object pointer type for the persistent class. The object
pointer type is used to return, pass, and cache dynamically allocated instances of a persistent
class. For example:

#pragma db object pointer(std::trl::shared_ptr<person>)
class person

{
=

There are several ways to specify an object pointer witlpoirger specifier. We can use a
complete pointer type as shown in the example above. Alternatively, we can specify only the
template name of a smart pointer in which case the ODB compiler will automatically append the
class name as a template argument. The following example is therefore equivalent to the one
above:

#pragma db object pointer(std::trl::shared_ptr)
class person

{
J3
If you would like to use the raw pointer as an object pointer, you cah as@ shortcut:

#pragma db object pointer(*) // Same as pointer(person*)
class person

{
=

If a pointer type is not explicitly specified, the default pointer, specified at the namespace level
(Section 12.5.1, pointer ") or with the --default-pointer ODB compiler option, is

used. If neither of these two mechanisms is used to specify the pointer, then the raw pointer is
used by default.

156 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1.3 abstract

For a more detailed discussion of object pointers, refer to Section 3.3, "Object and View Point-

[erst.
12.1.3abstract

Theabstract specifier specifies that the persistent class is abstract. An instance of an abstract
class cannot be stored in the database and is normally used as a base for other persistent classe
For example:

#pragma db object abstract
class person

{
=

#pragma db object
class employee: public person

{
=

#pragma db object
class contractor: public person

{
=

Persistent classes with pure virtual functions are automatically treated as abstract by the ODB
compiler. For a more detailed discussion of persistent class inheritance, refer to Chapter 8,

[Inheritancef'.
12.1.4readonly

Thereadonly specifier specifies that the persistent class is read-only. The database state of
read-only objects cannot be updated. In particular, this means that you cannot call the
database::update() function [Section 3.10, "Updating Persistent Objg¢cts") for such
objects. For example:

#pragma db object readonly
class person

{
=

Read-only and read-write objects can derive from each other without any restrictions. When a
read-only object derives from a read-write object, the resulting whole object is read-only, includ-
ing the part corresponding to the read-write base. On the other hand, when a read-write object

Revision 2.1, November 2012 C++ Object Persistence with ODB 157

12.1.5 optimistic

derives from a read-only object, all the data members that correspond to the read-only base are
treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 12rdatiynly ")
as well as composite value types (Section 12.8edonly ") as read-only.

12.1.50ptimistic

The optimistic specifier specifies that the persistent class has the optimistic concurrency
model. A class with the optimistic concurrency model must also specify the data member that is
used to store the object version usingutbesion pragma|(Section 12.4.15¢/érsion "). For
example:

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

I3

If a base class has the optimistic concurrency model, then all its derived classes will automati-
cally have the optimistic concurrency model. The current implementation also requires that in any
given inheritance hierarchy the object id and the version data members reside in the same class.

For a more detailed discussion of optimistic concurrency, ref¢r to Chapter 11, "Opt|mistic

12.1.6n0 _id

Theno_id specifier specifies that the persistent class has no object id. For example:
#pragma db object no_id

class person

{

3

A persistent class without an object id has limited functionality. Such a class cannot be loaded

with the database::load() or database::find() functions |(Section 3.9, "Loading
[Persistent Objects"), updated with thetabase::update() function [Section 3.10, "Updat-
[ng Persistent Objec{s"), or deleted with tii@tabase::erase() function [Section 3.11],

['Deleting Persistent Objects"). To load and delete objects without ids you can use the
database::query() (Chapter 4, "Querying the Databgse") and
database:.erase_query() (Section 3.11, "Deleting Persistent Objdcts") functions,

158 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1.7 callback

respectively. There is no way to update such objects except by using native SQL statements
(Section 3.12, "Executing Native SQL Statemgnts").

Furthermore, persistent classes without object ids cannot have container data members nor can
they be used in object relationships. Such objects are not entered into the session object cache
(Section 10.1, "Object Cache") either.

To declare a persistent class with an object id, use the data miembpecifier [(Section 12.4.1,

[id).
12.1.7callback

Thecallback specifier specifies the persist class member function that should be called before
and after a database operation is performed on an object of this class. For example:

#include <odb/callback.hxx>

#pragma db object callback(init)
class person

{

void
init (odb::callback event, odb::databaseg&);

}1
The callback function has the following signature and can be overloaded for constant objects:

void
name (odb::callback _event, odb::databaseg&);

void
name (odb::callback _event, odb::database&) const;

The first argument to the callback function is the event that triggered this catidbheall-
back_event enum-like type is defined in thedb/callback.hxx> header file and has the
following interface:

namespace odb

struct callback_event

{

enum value

{ .
pre_persist,
post_persist,
pre_load,
post_load,

Revision 2.1, November 2012 C++ Object Persistence with ODB 159

12.1.7 callback

pre_update,
post_update,
pre_erase,
post_erase

k

callback_event (value v);
operator value () const;

I3
}

The second argument to the callback function is the database on which the operation is about to
be performed or has just been performed. A callback function can be inline or virtual.

The callback function for the persist , * update , and*_erase events is always called
on the constant object reference while forthlead events — always on the unrestricted refer-
ence.

If only the noneonst version of the callback function is provided, then only thimad

events will be delivered. If only th@onst version is provided, then all the events will be deliv-
ered to this function. Finally, if both versions are provided, ther* thead events will be
delivered to the nogenst version while all others — to theonst version. If you need to
modify the object in one of thecdnst " events, then you can safely cast aveayst -ness

using theconst_cast operator if you know that none of the objects will be created const.
Alternatively, if you cannot make this assumption, then you can declare the data members you
wish to modify agnutable .

A database operations callback can be used to implement object-specific pre and post initializa-
tions, registrations, and cleanups. As an example, the following code fragment outlines an imple-
mentation of gperson class that maintains the transiexgte data member in addition to the
persistent date of birth. A callback is used to calculate the value of the former from the latter
every time gerson object is loaded from the database.

#include <odb/core.hxx>
#include <odb/callback.hxx>

#pragma db object callback(init)
class person

{

private:
friend class odb::access;

date born_;

#pragma db transient
unsigned short age_;

160 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1.8 schema

void
init (odb::callback event e, odb::database&)

{

switch (e)

{

case odb::callback_event::post_load:
/I Calculate age from the date of birth.

break;
}

default:
break;

}
}
h

12.1.8schema
Theschema specifier specifies a database schema that should be used for the persistent class.

In relational databases the term schema can refer to two related but ultimately different concepts.
Normally it means a collection of tables, indexes, sequences, etc., that are created in the database
or the actual DDL statements that create these database objects. Some database implementatior
support what would be more accurately callethtabase namespadteit is also called a schema.

In this sense, a schema is a separate hamespace in which tables, indexes, sequences, etc., can
created. For example, two tables that have the same name can coexist in the same database if the
belong to different schemas. In this section when we talk about a schema, we refer to the
database namespaogeaning of this term.

When schemas are in use, a database object name is qualified with a schema. For example:
CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...

In the above examplaccounting is the schema and thamployee table belongs to this
schema.

Not all database implementations support schemas. Some implementation that don’t support
schemas (for example, MySQL, SQLite) allow the use of the above syntax to specify the database
name. Yet others may support several levels of qualification. For example, Microsoft SQL Server
has three levels starting with the linked database server, followed by the database, and then
followed by the schemaerverl.companyl.accounting.employee . While the actual
meaning of the qualifier in a qualified name vary from one database implementation to another,
here we refer to all of them collectively as a schema.

Revision 2.1, November 2012 C++ Object Persistence with ODB 161

12.1.8 schema

In ODB, a schema for a table of a persistent class can be specified at the class level, C++ names-
pace level, or the file level. To assign a schema to a specific persistent class we can use the
schema specifier, for example:

#pragma db object schema("accounting”)
class employee

{
=

If we are also assigning a table name, then we can use a shorter notation by specifying both the
schema and the table name intidgle specifier:

#pragma db object table("accounting.employee")
class employee

{
=

If we want to assign a schema to all the persistent classes in a C++ namespace, then, instead o
specifying the schema for each class, we can specify it once at the C++ namespace level. For
example:

#pragma db namespace schema("accounting")
namespace accounting

{
#pragma db object

class employee

{
=

#pragma db object
class employer

{

=
}

If we want to assign a schema to all the persistent classes in a file, then we can use the
--schema ODB compiler option. For example:

odb ... --schema accounting ...

An alternative to this approach with the same effect is to assign a schema to the global names-
pace:

162 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1.8 schema

#pragma db namespace() schema("accounting”)

By default schema qualifications are accumulated starting from the persistent class, continuing
with the namespace hierarchy to which this class belongs, and finishing with the schema specified
with the--schema option. For example:

#pragma db namespace schema("audit_db")
namespace audit
{
#pragma db namespace schema("accounting")
namespace accounting
{
#pragma db object
class employee

{

};...

}
}
If we compile the above code fragment with thechema serverl option, then the
employee table will have theserverl.audit_db.accounting.employee qualified
name.

In some situations we may want to prevent such accumulation of the qualifications. To accom-
plish this we can use the so-called fully-qualified names, which have the empty leading name
component. This is analogous to the C++ fully-qualified names in :ihecount-
ing::employee form. For example:

#pragma db namespace schema("accounting")
namespace accounting

{

#pragma db object schema(".hr")
class employee

{
=

#pragma db object
class employer

{

=
}

In the above code fragment, temployee table will have thérr.employee qualified name
while the employer — accounting.employer . Note also that the empty leading name
component is a special ODB syntax and is not propagated to the actual database names (using :

Revision 2.1, November 2012 C++ Object Persistence with ODB 163

12.1.9 polymorphic

name like.hr.employee to refer to a table will most likely result in an error).

Auxiliary database objects for a persistent class, such as indexes, sequences, triggers, etc., are a
created in the same schema as the class table. By default, this is also true for the container tables
However, if you need to store a container table in a different schema, then you can provide a
gualified name using thiable specifier, for example:

#pragma db object table("accounting.employee")
class employee

{

#pragma db object table("operations.projects")
std::vector<std::string> projects_;

%

The standard syntax for qualified names used isthema andtable specifiers as well as the

view column specifier |(Section 12.4.10cdlumn_ (view)') has the" name name.." form

where, as discussed above, the leading name component can be empty to denote a fully qualified
name. This form, however, doesn’t work if one of the name components contains periods. To
support such cases the alternative form is availallamé.” namé ... For example:

#pragma db object table("accounting_1.2"."employee")
class employee

{
=

Finally, to specify an unqualified name that contains periods we can use the following special
syntax:

#pragma db object schema(."accounting_1.2") table("employee")
class employee

{
=

Table prefixes| (Section 12.5.2able ") can be used as an alternative to database schemas if the
target database system does not support schemas.

12.1.9polymorphic

The polymorphic specifier specifies that the persistent class is polymorphic. For more infor-
mation on polymorphism support, refef to Chapter 8, "Inheritance".

164 C++ Object Persistence with ODB Revision 2.1, November 2012

12.1.10 session

12.1.10session

The session specifier specifies whether to enable session support for the persistent class. For
example:

#pragma db object session // Enable.
class person

{
=

#pragma db object session(true) // Enable.
class employee

{
=

#pragma db object session(false) // Disable.
class employer

{
=

Session support is disabled by default unless-tgenerate-session ODB compiler
option is specified or session support is enabled at the namespace| level (Section| 12.5.4,
['session_"). For more information on sessions, refdr to Chapter 10, "Selssion”.

12.1.11definition

The definition specifier specifies an alternatigefinition locationfor the persistent class.

By default, the ODB compiler generates the database support code for a persistent class when we
compile the header file that defines this class. However, iti¢fi@aition specifier is used,

then the ODB compiler will instead generate the database support code when we compile the
header file containing this pragma.

For more information on this functionality, refel to Section 12.31&fifiition "l

12.1.12transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in
the persistent class as transignt (Section 12 #ahslent "). This specifier is primarily useful
when declaring virtual data members, as discusged in Section 12vrtl@l" "}

Revision 2.1, November 2012 C++ Object Persistence with ODB 165

12.2 View Type Pragmas

12.2 View Type Pragmas

A pragma with theview qualifier declares a C++ class as a view type. The qualifier can be
optionally followed, in any order, by one or more specifiers summarized in the table below:

Specifier Summary Section
object object associated with a view
table table associated with a view 12.2
query view query condition
pointer pointer type for a view
callback database operations callback
definition definition location for a view 12.2.6
transient all non-virtual data members in a view are trans(12.2.7

For more information on view types refelf to Chapter 9, "Views".

12.2.10bject

The object specifier specifies a persistent class that should be associated with the view. For
more information on object associations refgr to Section 9.1, "Object Yiews".

12.2.2table

Thetable specifier specifies a database table that should be associated with the view. For more
information on table associations refef to Section 9.2, "Table Viiews".

12.2.3query

The query specifier specifies a query condition for an object or table view or a native SQL
query for a native view. An emptyuery specifier indicates that a native SQL query is provided
at runtime. For more information on query conditions refer to Section 9.4, "View Query |Condi-
ftions]. For more information on native SQL queries, reffr to Section 9.5, "Native Views".

166 C++ Object Persistence with ODB Revision 2.1, November 2012

12.3 Value Type Pragmas

12.2.4pointer

Thepointer specifier specifies the view pointer type for the view class. Similar to objects, the
view pointer type is used to return dynamically allocated instances of a view class. The semantics
of the pointer specifier for a view are the same as those ofpthiater specifier for an

object (Section 12.1.2pbinter).

12.2.5callback

Thecallback specifier specifies the view class member function that should be called before
and after an instance of this view class is created as part of the query result iteration. The seman-
tics of thecallback specifier for a view are similar to those of ttradlback specifier for an

object [Section 12.1.7¢callback ") except that the only events that can trigger a callback call

in the case of a view apge_load andpost_load

12.2.6definition

The definition specifier specifies an alternatigefinition locationfor the view class. By
default, the ODB compiler generates the database support code for a view class when we compile
the header file that defines this class. However, ifdif@nition specifier is used, then the

ODB compiler will instead generate the database support code when we compile the header file
containing this pragma.

For more information on this functionality, refel to Section 12.31&fifiition "l

12.2.7transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in
the view class as transient (Section 12.4tfgnsient). This specifier is primarily useful
when declaring virtual data members, as discusged in Section 12vrtl@]" "}

12.3 Value Type Pragmas

A pragma with thevalue qualifier describes a value type. It can be optionally followed, in any
order, by one or more specifiers summarized in the table below:

Revision 2.1, November 2012 C++ Object Persistence with ODB 167

12.3 Value Type Pragmas

Specifier Summary Section
type database type for a value type
id_type gg}[g(t:)ﬁze type for a value type when used as
null /not_null type can/cannot beULL
default default value for a value type 12.3.4
options database options for a value type
readonly composite value type is read-only 12.3.6
definition definition location for a composite value type|[12.3.7
transient \e;glﬂgna;/érilrjsrllgiitri members in a composite 1233
unordered ordered container should be stored unordere[12.3.9
index_type database type for a container’s index type |[12.3.1(
key_type database type for a container’s key type
value_type database type for a container’s value type
value_null /value_not_null container’s value can/cannot N&JLL 12.3.13
id_options database options for a container’s id column|{12.3.14
index_options database options for a container’s index colu
key options database options for a container’s key colum (12.3.16
value_options database options for a container’s value colu/(12.3.1
id_column column name for a container’s object id 12.3.18
index_column column name for a container’s index 12.3.19
key column column name for a container’s key 12.3.20
value_column column name for a container’s value 12.3.2

Many of the value type specifiers have corresponding member type specifiers with the same
names|(Section 12.4, "Data Member Pragnas"). The behavior of such specifiers for members is
similar to that for value types. The only difference is the scope. A particular value type specifier
applies to all the members of this value type that don’t have a pre-member version of the speci-
fier, while the member specifier always applies only to a single member. Also, with a few excep-

168 C++ Object Persistence with ODB Revision 2.1, November 2012

12.3.1 type

tions, member specifiers take precedence over and override parameters specified with value spec-
ifiers.

12.3.1type

Thetype specifier specifies the native database type that should be used for data members of
this type. For example:

#pragma db value(bool) type("INT")

#pragma db object
class person

{

bool married_; // Mapped to INT NOT NULL database type.
3

The ODB compiler provides the default mapping between common C++ types, sbobl gs

int , andstd::string and the database types for each supported database system. For more
information on the default mapping, refer [to Part Il, "Database Systems"ndlhe and
not_null (Section 12.3.3,dull /not null ") specifiers can be used to control the NULL
semantics of a type.

In the above example we changed the mapping fobdloé type which is now mapped to the

INT database type. In this case, tteue pragma is all that is necessary since the ODB
compiler will be able to figure out how to store a boolean value as an integer in the database.
However, there could be situations where the ODB compiler will not know how to handle the
conversion between the C++ and database representations of a value. Consider, as an example,
situation where the boolean value is stored in the database as a string:

#pragma db value(bool) type("VARCHAR(5)")

The possible database values for the Gmte value could be'true” , or "TRUE", or

"True" . Or, maybe, all of the above could be valid. The ODB compiler has no way of knowing
how your application wants to convéol to a string and back. To support such custom value
type mappings, ODB allows you to provide your own database conversion functions by specializ-
ing the value_traits class template. Thenapping example in theodb-examples

package shows how to do this for all the supported database systems.

12.3.2id_type

Theid_type specifier specifies the native database type that should be used for data members
of this type that are designated as object identifiers (Section 12dt.), Th combination with
thetype specifier|(Section 12.3.1type ") id_type allows you to map a C++ type differently

Revision 2.1, November 2012 C++ Object Persistence with ODB 169

12.3.3 null/not_null

depending on whether it is used in an ordinary member or an object id. For example:

#pragma db value(std::string) type("TEXT") id_type("VARCHAR(128)")

#pragma db object
class person

{

#pragma db id
std::string email_; // Mapped to VARCHAR(128) NOT NULL.

std::string name_; // Mapped to TEXT NOT NULL.
3

Note that there is no corresponding member type specified ftype
can be achieved with just tiype specifier, for example:

#pragma db object
class person

{

#pragma db id type("VARCHAR(128)")
std::string email_;

3
12.3.3null /not_null

since the desired result

Thenull andnot_null specifiers specify that a value type or object pointer can or cannot be
NULL, respectively. By default, value types are assumed not to Blldk values while object
pointers are assumed to alléWLL values. Data members of types that allWLL values are
mapped in a relational database to columns that alowi. values. For example:

using std::trl::shared_ptr;

typedef shared_ptr<std::string> string_ptr;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person

{

string_ptr name_; // Mapped to TEXT NULL.
3

typedef shared_ptr<person> person_ptr;
#pragma db value(person_ptr) not_null

170 C++ Object Persistence with ODB

Revision 2.1, November 2012

12.3.4 default

The NULL semantics can also be specified on the per-member hasis (Section [2.4.6,
['null_/not null _"). If both a type and a member hawell /not null specifiers, then the
member specifier takes precedence. If a member specifier relaXgblthesemantics (that is, if

a member has theull specifier and the type has the expliedt_null specifier), then a
warning is issued.

It is also possible to override a previously specifial /not_null specifier. This is primarily
useful if a third-party type, for example, one provided by a profile libfary (Part Ill, "Profiles"),
allows NULL values but in your object model data members of this type should neigslie

In this case you can use thet_null specifier to disabl&ULL values for this type for the
entire translation unit. For example:

/I By default, null_string allows NULL values.
I
#include <null-string.hxx>

/I Disable NULL values for all the null_string data members.
I
#pragma db value(null_string) not_null

For a more detailed discussion of tHELL semantics for values, refer{to Section 7.3, "Pointers
[and NULL Value Semantic$". For a more detailed discussion oNtheL semantics for object
pointers, refer tp Chapter 6, "Relationshjps".

12.3.4default

Thedefault specifier specifies the database default value that should be used for data members
of this type. For example:

#pragma db value(std::string) default("")

#pragma db object
class person

{

std::string name_; // Mapped to TEXT NOT NULL DEFAULT ".
3

The semantics of théefault specifier for a value type are similar to those of dbéault
specifier for a data membeér (Section 12.4défault).

Revision 2.1, November 2012 C++ Object Persistence with ODB 171

12.3.5 options

12.3.50ptions

The options specifier specifies additional column definition options that should be used for
data members of this type. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person

{

std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
3

The semantics of theptions specifier for a value type are similar to those ofdpgons
specifier for a data membeér (Section 12.4aptibns).

12.3.6readonly

Thereadonly specifier specifies that the composite value type is read-only. Changes to data
members of a read-only composite value type are ignored when updating the database state of ar
object (Section 3.10, "Updating Persistent Obj¢cts") containing such a value type. Note that this
specifier is only valid for composite value types. For example:

#pragma db value readonly
class person_name

{
=

Read-only and read-write composite values can derive from each other without any restrictions.
When a read-only value derives from a read-write value, the resulting whole value is read-only,
including the part corresponding to the read-write base. On the other hand, when a read-write
value derives from a read-only value, all the data members that correspond to the read-only base
are treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 12rdatiyrly ")
as well as whole objects (Section 12.1réatonly ") as read-only.

12.3.7definition

The definition specifier specifies an alternatidefinition locationfor the composite value

type. By default, the ODB compiler generates the database support code for a composite value
type when we compile the header file that defines this value type. Howeverdéfihi¢éion

specifier is used, then the ODB compiler will instead generate the database support code when we

172 C++ Object Persistence with ODB Revision 2.1, November 2012

12.3.7 definition

compile the header file containing this pragma.

This mechanism is primarily useful for converting third-party types to ODB composite value
types. In such cases we normally cannot modify the header files to add the necessary pragmas. It
is also often inconvenient to compile these header files with the ODB compiler. Withfihe

nition specifier we can create @rapper headerthat contains the necessary pragmas and
instructs the ODB compiler to generate the database support code for a third-party type when we
compile the wrapper header. As an example, considect timeval that is defined in the
<sys/time.h> system header. This type has the following (or similar) definition:

struct timeval

{
long tv_sec;
long tv_usec;

%

If we would like to make this type an ODB composite value type, then we can create a wrapper
header, for examplime-mapping.hxx , with the following content:

#ifndef TIME_MAPPING_HXX
#define TIME_MAPPING_HXX

#include <sys/time.h>
#pragma db value(timeval) definition
#pragma db member(timeval::tv_sec) column("sec")

#pragma db member(timeval::tv_usec) column("usec")

#endif // TIME_MAPPING_HXX

If we now compile this header with the ODB compiler, the resulting
time-mapping-odb.?xx files will contain the database support code f&iruct
timeval . To use timeval in our persistent classes, we simply include the
time-mapping.hxx header:

#include <sys/time.h>
#include "time-mapping.hxx"

#pragma db object
class object

{
timeval timestamp;

I3

Revision 2.1, November 2012 C++ Object Persistence with ODB 173

12.3.8 transient

12.3.8transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in
the composite value type as transignt (Section 12#ahslent "). This specifier is primarily
useful when declaring virtual data members, as discusgsed in Section 1td8l, " "}

12.3.9unordered

Theunordered specifier specifies that the ordered container should be stored unordered in the
database. The database table for such a container will not contain the index column and the order
in which elements are retrieved from the database may not be the same as the order in which they
were stored. For example:

typedef std::vector<std::string> names;
#pragma db value(names) unordered

For a more detailed discussion of ordered containers and their storage in the database, refer to
[Section 5.1, "Ordered Containgrs".

12.3.10index_type

Theindex_type specifier specifies the native database type that should be used for the ordered
container’s index column. The semanticsnofex_type are similar to those of thtgpe spec-

ifier (Section 12.3.1,tYype "). The native database type is expected to be an integer type. For
example:

typedef std::vector<std::string> names;
#pragma db value(names) index_type("SMALLINT UNSIGNED")

12.3.11key type

The key _type specifier specifies the native database type that should be used for the map
container’s key column. The semantickef/ _type are similar to those of thgpe specifier
(Section 12.3.1,type "). For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")

12.3.12value_type

The value_type specifier specifies the native database type that should be used for the
container’s value column. The semanticyvalie_type are similar to those of thgpe spec-
ifier (Section 12.3.1,type "). For example:

174 C++ Object Persistence with ODB Revision 2.1, November 2012

12.3.13 value_null/ivalue_not_null

typedef std::vector<std::string> names;
#pragma db value(names) value_type("VARCHAR(255)")

Thevalue_null andvalue_not_null (Section 12.3.13,
['value null /value not null ") specifiers can be used to control the NULL semantics of
a value column.

12.3.13value_null /value_not_null

Thevalue_null andvalue_not_null specifiers specify that the container type’s element
value can or cannot beNULL, respectively. The semantics ofalue_null and
value_not_null are similar to those of thaull andnot_null specifiers|(Section 12.3.3,

['null_/not_null _"). For example:

using std::trl::shared_ptr;

#pragma db object
class account

{
=

typedef std::vector<shared_ptr<account> > accounts;
#pragma db value(accounts) value_not_null

For set and multiset containefs (Section 5.2, "Set and Multiset Contginers") the element value is
automatically treated as not allowingN&JLL value.

12.3.14id_options

Theid_options specifier specifies additional column definition options that should be used
for the container’s id column. For example:

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) id_options("COLLATE binary")

The semantics of thi&l_options specifier for a container type are similar to those of the
id_options specifier for a container data memhyer (Section 12.4i@4ofjtions).

12.3.15index_options

The index_options specifier specifies additional column definition options that should be
used for the container’s index column. For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 175

12.3.16 key_options

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) index_options("ZEROFILL")

The semantics of thiedex_options specifier for a container type are similar to those of the
index_options specifier for a container data member| (Section 12.4.25,
['index options).

12.3.16key options

Thekey_options specifier specifies additional column definition options that should be used
for the container’s key column. For example:

typedef std::map<std::string, std::string> properties;
#pragma db value(properties) key_options("COLLATE binary")

The semantics of theey options specifier for a container type are similar to those of the
key options specifier for a container data member (Section 12.4k8f, ‘bptions ").

12.3.17value_options

The value_options specifier specifies additional column definition options that should be
used for the container’s value column. For example:

typedef std::set<std::string> nicknames;
#pragma db value(nicknames) value_options("COLLATE binary")

The semantics of thealue_options specifier for a container type are similar to those of the
value_options specifier for a container data member| (Section 12.4.27,
['value options).

12.3.18id_column

Theid_column specifier specifies the column name that should be used to store the object id in
the container’s table. For example:

typedef std::vector<std::string> names;
#pragma db value(names) id_column("id")

If the column name is not specified, thaject_id is used by default.

12.3.19index_column

The index_column specifier specifies the column name that should be used to store the
element index in the ordered container’s table. For example:

176 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4 Data Member Pragmas

typedef std::vector<std::string> names;
#pragma db value(names) index_column("name_number")

If the column name is not specified, thadex is used by default.

12.3.20key_column

Thekey_column specifier specifies the column name that should be used to store the key in the
map container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_column("age")

If the column name is not specified, tHay is used by default.

12.3.21value_column

The value_column specifier specifies the column name that should be used to store the
element value in the container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) value_column("weight")

If the column name is not specified, thealue is used by default.

12.4 Data Member Pragmas

A pragma with thenember qualifier or a positioned pragma without a qualifier describes a data
member. It can be optionally followed, in any order, by one or more specifiers summarized in the
table below:

Specifier Summary Section

id member is an object id
auto id is assigned by the database 12.4.2
type database type for a member
id_type gg}zsﬁze type for a member when used as a
get /set /access member accessor/modifier expressions 12.4.%
null /not_null member can/cannot IdULL 12.4.6
default default value for a member 12.4

Revision 2.1, November 2012 C++ Object Persistence with ODB

[y

e

12.4 Data Member Pragmas

options database options for a member 12.4.8

column ggl;r;;sﬂgrczhjzr a member of an object or

column column name for a member of a view
transient member is not stored in the database
readonly member is read-only 12.4.12
virtual declare a virtual data member 12.4.13
inverse member is_ an inverse side of a bidirectional 5 71A

relationship

version member stores object version 12.4.1%
index define database index for a member
unique define unique database index for a member |[12.4.17
unordered ordered container should be stored unordere|(12.4.18
table table name for a container 12.4.19
index_type database type for a container’s index type
key type database type for a container’s key type 12.4.2

value_type database type for a container’s value type |[12.4.22
value_null /value_not_null container’s value can/cannot N&JLL 12.4.23
id_options database options for a container’s id column|[12.4.24
index_options database options for a container’s index colu|[12.4.2%
key options database options for a container’s key colum
value_options database options for a container’s value colu
id_column column name for a container’s object id 12.4.28
index_column column name for a container’s index 12.4.29
key_column column name for a container’s key
value_column column name for a container’s value 12.4.3

178

C++ Object Persistence with ODB

12.41id

Many of the member specifiers have corresponding value type specifiers with the same names
(Section 12.3, "Value Type Pragmias"). The behavior of such specifiers for members is similar to
that for value types. The only difference is the scope. A particular value type specifier applies to
all the members of this value type that don’t have a pre-member version of the specifier, while
the member specifier always applies only to a single member. Also, with a few exceptions,
member specifiers take precedence over and override parameters specified with value specifiers.

12.4.1id

Theid specifier specifies that the data member contains the object id. In a relational database, an
identifier member is mapped to a primary key. For example:

#pragma db object
class person

{

#pragma db id
std::string email_;

I3

Normally, every persistent class has a data member designated as an object’s identifier. However,
it is possible to declare a persistent class without an id using the objedt specifier [[Sectidn
[12.1.6, ho _id ").

Note also that thed specifier cannot be used for data members of composite value types or
views.

12.4.2auto

Theauto specifier specifies that the object’s identifier is automatically assigned by the database.
Only a member that was designated as an object id can have this specifier. For example:

#pragma db object
class person

{

#pragma db id auto
unsigned long id_;

3

Note that automatically-assigned object ids are not reused. If you have a high object turnover
(that is, objects are routinely made persistent and then erased), then care must be taken not to rut
out of object ids. In such situations, usimgsigned long long as the identifier type is a

safe choice.

Revision 2.1, November 2012 C++ Object Persistence with ODB 179

12.4.3 type

For additional information on the automatic identifier assignment, refer to Section 3.8, "Making
[Objects Persistent".

Note also that thauto specifier cannot be specified for data members of composite value types
or views.

12.4.3type

Thetype specifier specifies the native database type that should be used for the data member.
For example:

#pragma db object
class person

{

#pragma db type("INT")
bool married_;

3

The null and not_null (Section 12.4.6, dull /not null ") specifiers can be used to
control the NULL semantics of a data member.

12.4.4id_type

Thetype specifier specifies the native database type that should be used for the data member
when it is part of an object identifier. This specifier only makes sense when applied to a member
of a composite value type that is used for both id and non-id members. For example:

#pragma db value
class name

{

#pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
std::string first_;

#pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
std::string last_;

h

#pragma db object
class person

{

#pragma db id

180 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.5 get/set/access

name name_; // name_.first , name_.last mapped to VARCHAR(64)

name alias_; // alias_.first_, alias_.last mapped to VARCHAR(256)
3

12.4.5¢get /set /access

Theget andset specifiers specify the data member accessor and modifier expressions, respec-
tively. If provided, the generated database support code will use these expressions to access anc
modify the data member when performing database operationsactkees specifier can be

used as a shortcut to specify both the accessor and modifier if they happen to be the same.

In its simplest form the accessor or modifier expression can be just a name. Such a name should
resolve either to another data member of the same type or to a suitable accessor or modifier
member function. For example:

#pragma db object
class person

{

public:
const std::string& name () const;
void name (const std::string&);
private:
#pragma db access(name)
std::string name_;

3

A suitable accessor function iscanst member function that takes no arguments and whose
return value can be implicitly converted to tlenst reference to the member type
(const std::string& in the example above). An accessor function that retucenst
reference to the data member is calbgdreference accessoOtherwise, it is calledy-value
accessor

A suitable modifier function can be of two forms. It can be the so chile@gference modifier
which is a member function that takes no arguments and returns @msin- reference to the

data memberstd::string& in the example above). Alternatively, it can be the so called
by-value modifiewhich is a member function taking a single argument — the new value — that
can be implicitly initialized from a variable of the member tygtel:(string in the example

above). The return value of a by-value modifier, if any, is ignored. If both by-reference and
by-value modifiers are available, then ODB prefers the by-reference version since it is more effi-
cient. For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 181

12.4.5 get/set/access

#pragma db object
class person

{

public:
std::string get_name () const; // By-value accessor.
std::string& set_name (); /I By-reference modifier.
void set_name (std::string const&); // By-value modifier.
private:
#pragma db get(get_name) \ // Uses by-value accessor.
set(set_name) // Uses by-reference modifier.
std::string name_;

%

Note that in many cases it is not necessary to specify accessor and modifier functions explicitly
since the ODB compiler will try to discover them automatically in case the data member will be
inaccessible to the generated code. In particular, in both of the above examples the ODB compiler
would have successfully discovered the necessary functions. For more information on this func-
tionality, refer tq Section 3.2, "Declaring Persistent Objects and Values".

Note also that by-value accessors and by-value modifiers cannot be used for certain data
members in certain situations. These limitations are discussed in more detail later in this section.

Accessor and modifier expressions can be more elaborate than simple names. An accessor
expression is any C++ expression that can be used to initiatimesa reference to the member

type. Similar to accessor functions, which are just a special case of accessor expressions, an
accessor expression that evaluates ¢oresst reference to the data member is calbgerefer-

ence accessor expressiddtherwise, it is calletly-value accessor expression

Modifier expressions can also be of two forrhg:reference modifier expressi@amd by-value
modifier expressioffagain, modifier functions are just a special case of modifier expressions). A
by-reference modifier expression is any C++ expression that evaluates to tbensbon+efer-

ence to the member type. A by-value modifier expression can be a single or multiple (separated
by semicolon) C++ statements with the effect of setting the new member value.

There are two special placeholders that are recognized by the ODB compiler in accessor and
modifier expressions. The first is thiis keyword which denotes a reference (note: not a
pointer) to the persistent object. In accessor expressions this refereoostis while in modi-

fier expressions it is nooenst . If an expression does not contain this placeholder, then

the ODB compiler automatically prefixes it withis. sequence.

The second placeholder, tf® sequence, is used to denote the new value in by-value modifier
expressions. The ODB compiler replaces the question mark with the variable name, keeping the
surrounding parenthesis. The following example shows a few more interesting accessor and
modifier expressions:

182 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.5 get/set/access

#pragma db value
struct point

{
point (int, int);

int X;
inty;
h

#pragma db object
class person

{

public:
const char* name () const;
void name (const char*);
private:
#pragma db get(std::string (this.name ())) \
set(name ((?).c_str ())) // The same as this.name (...).
std::string name_;

public:
const std::unique_ptr<account>& acc () const;
void acc (std::unique_ptr<account>);

private:
#pragma db set(acc (std::move (?)))
std::unique_ptr<account> acc_;

public:
int loc_x () const
int loc_y () const
void loc_x (int);
void loc_y (int);
private:
#pragma db get(point (this.loc_x (), this.loc_y ())) \
set(this.loc_x ((?).x); this.loc_y ((?).y))
point loc_;

%

When the data member is of an array type, then the terms "reference" and "member type" in the
above discussion should be replaced with "pointer" and "array element type", respectively. That
is, the accessor expression for an array member is any C++ expression that can be used to initial-
ize aconst pointer to the array element type, and so on. The following example shows common
accessor and modifier signatures for array members:

#pragma db object

class person

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 183

12.4.5 get/set/access

public:
const char* id () const; // By-reference accessor.
void id (const char*); // By-value modifier.
private:
charid_[16];

public:
const char* pub_key () const; // By-reference accessor.
char* pub_key (); /I By-reference modifier.
private:
char pub_key [2048];

h

Accessor and modifier expressions can be used with data members of simple value, composite
value, container, and object pointer types. They can be used for data members in persistent
classes, composite value types, and views. There is also a mechanism related to accessors an
modifiers called virtual data members and which is discusged in Section 12#4i13) " "l

There are, however, certain limitations when it comes to using by-value accessor and modifier
expressions. First of all, if a by-value modifier is used, then the data member type should be
default-constructible. Furthermore, a composite value type that has a container member cannot be
modified with a by-value modifier. Only a by-reference modifier expression can be used. The
ODB compiler will detect such cases and issue diagnostics. For example:

#pragma db value

struct name

{

std::string first_;

std::string last_;
std::vector<std::string> aliases_;

%

#pragma db object
class person

{

public:
const name& name () const;
void name (const nameg&);
private:
#pragma db access(name) // Error: by-value modifier.
name name_;

%

184 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.6 null/not_null

In certain database systems it is also not possible to use by-value accessor and modifier expres-
sion with certain database types. The ODB compiler is only able to detect such cases and issue
diagnostics if you specified accessor/modifier function names as opposed to custom expressions.
For more information on these database and type-specific limitations, refer to the "Limitations"
sections in Part Il, "Database Systems".

12.4.6null /not_null

The null andnot_null specifiers specify that the data member can or canndUid,
respectively. By default, data members of basic value types for which database mapping is
provided by the ODB compiler do not alldWJLL values while data members of object pointers
allow NULL values. Other value types, such as those provided by the profile libfaries (Rart Ill,
['Profiles]), may or may not alloULL values, depending on the semantics of each value type.
Consult the relevant documentation to find out more aboulNthiel. semantics for such value
types. A data member containing the object id (Section 12id.T7) s automatically treated as

not allowing aNULL value. Data members that alldWJLL values are mapped in a relational
database to columns that alldWJLL values. For example:

using std::trl::shared_ptr;

#pragma db object
class person

{

#pragma db null
std::string name_;

3

#pragma db object
class account

{

#pragma db not_null
shared_ptr<person> holder_;

3

The NULL semantics can also be specified on the per-type basis (Section 12.3.3,
['null_/not null _"). If both a type and a member hawell /not null specifiers, then the
member specifier takes precedence. If a member specifier relaXgblthesemantics (that is, if

a member has theull specifier and the type has the explicdt_null specifier), then a
warning is issued.

Revision 2.1, November 2012 C++ Object Persistence with ODB 185

12.4.7 default

For a more detailed discussion of tHELL semantics for values, refer{to Section 7.3, "Pointers
[andNULL Value Semantic$". For a more detailed discussion ofNtheL semantics for object
pointers, refer tp Chapter 6, "Relationshjps".

12.4.7default

The default specifier specifies the database default value that should be used for the data
member. For example:

#pragma db object
class person

{

#pragma db default(-1)
int age_; /l Mapped to INT NOT NULL DEFAULT -1.

3

A default value can be the speamill keyword, abool literal true orfalse), an integer

literal, a floating point literal, a string literal, or an enumerator name. If you need to specify a
default value that is an expression, for example an SQL function call, then you can use the
options specifier|(Section 12.4.8pptions ") instead. For example:

enum gender {male, female, undisclosed};

#pragma db object
class person

{

#pragma db default(null)
odb::nullable<std::string> middle_; // DEFAULT NULL

#pragma db default(false)
bool married_; /I DEFAULT O/FALSE

#pragma db default(0.0)

float weight_; /I DEFAULT 0.0

#pragma db default("Mr")

string title_; /[DEFAULT 'Mr’

#pragma db default(undisclosed)

gender gender_; /I DEFAULT 2/'undisclosed’

#pragma db options("DEFAULT CURRENT_TIMESTAMP()")

date timestamp_; /l DEFAULT CURRENT_TIMESTAMP()
3

186 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.7 default

Default values specified as enumerators are only supported for members that are mapped to an
ENUMor an integer type in the database, which is the case for the automatic mapping of C++
enums to suitable database types as performed by the ODB compiler. If you have mapped a C++
enum to another database type, then you should use a literal corresponding to that type to specify
the default value. For example:

enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person

{

#pragma db default("undisclosed")
gender gender_; /I DEFAULT ’'undisclosed’

3

A default value can also be specified on the per-type Qasis (Section 1dedaylt’ "). An
emptydefault specifier can be used to reset a default value that was previously specified on
the per-type basis. For example:

#pragma db value(std::string) default("")

#pragma db object
class person

{

#pragma db default()
std::string name_; // No default value.

3

A data member containing the object [id (Section 12.4d1}]) is automatically treated as not
having a default value even if its type specifies a default value.

Note also that default values do not affect the generated C++ code in any way. In particular, no
automatic initialization of data members with their default values is performed at any point. If
you need such an initialization, you will need to implement it yourself, for example, in your
persistent class constructors. The default values only affect the generated database schemas an
in the context of ODB, are primarily useful for schema evolution.

Additionally, thedefault specifier cannot be specified for view data members.

Revision 2.1, November 2012 C++ Object Persistence with ODB 187

12.4.8 options

12.4.8options

Theoptions specifier specifies additional column definition options that should be used for the
data member. For example:

#pragma db object
class person

{

#pragma db options("CHECK(email '=")")
std::string email_; // Mapped to TEXT NOT NULL CHECK(email !=").
3

Options can also be specified on the per-type bpsis (Section 128tlens "). By default,
options are accumulating. That is, the ODB compiler first adds all the options specified for a
value type followed by all the options specified for a data member. To clear the accumulated
options at any point in this sequence you can use an @pptys specifier. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person

{

std::string first_; // TEXT NOT NULL COLLATE binary

#pragma db options("CHECK(email '=")")
std::string last_; // TEXT NOT NULL COLLATE binary CHECK(email != ")

#pragma db options()
std::string title_; // TEXT NOT NULL

#pragma db options() options("CHECK(email !=")")
std::string email_; // TEXT NOT NULL CHECK(email !=")
3

ODB provides dedicated specifiers for specifying column types (Section 12y48,"), NULL
constraints [(Section 12.4.6,null /not null "), and default values| (Section 12.4.7,
['default ™). For ODB to function correctly these specifiers should always be used instead of
the opaqueptions specifier for these components of a column definition.

Note also that theptions specifier cannot be specified for view data members.

188 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.9 column (object, composite value)

12.4.9column (object, composite value)

Thecolumn specifier specifies the column name that should be used to store the data member of
a persistent class or composite value type in a relational database. For example:

#pragma db object
class person

{

#pragma db id column("person_id")
unsigned long id_;

3

For a member of a composite value type,ablemn specifier specifies the column name prefix.
Refer td Section 7.2.2, "Composite Value Column and Table Names" for details.

If the column name is not specified, it is derived from the member’s so-called public name. A
public member name is obtained by removing the common data member name decorations, such
as leading and trailing underscores, riheprefix, etc.

12.4.10column (view)

The column specifier can be used to specify the associated object data member, the potentially
gualified column name, or the column expression for the data member of a view class. For more
information, refer tp Section 9.1, "Object Vieyws" and Section 9.2, "Table Views".

12.4.11transient

The transient specifier instructs the ODB compiler not to store the data member in the
database. For example:

#pragma db object
class person

{
date born_;

#pragma db transient
unsigned short age_; // Computed from born_.

%

This pragma is usually used on computed members, pointers and references that are only mean-
ingful in the application’s memory, as well as utility members such as mutexes, etc.

Revision 2.1, November 2012 C++ Object Persistence with ODB 189

12.4.12 readonly

12.4.12readonly

Thereadonly specifier specifies that the data member of an object or composite value type is
read-only. Changes to a read-only data member are ignored when updating the database state o
an object|(Section 3.10, "Updating Persistent Objects") containing such a member. Since views
are read-only, it is not necessary to use this specifier for view data members. Olpject id] (Section
and inverse[(Section 12.4.14pvVerse ") data members are automatically treated

as read-only and must not be explicitly declared as such. For example:

#pragma db object
class person

{

#pragma db readonly
date born_;

3

Besides simple value members, object pointer, container, and composite value members can alsc
be declared read-only. A change of a pointed-to object is ignored when updating the state of a
read-only object pointer. Similarly, any changes to the number or order of elements or to the
element values themselves are ignored when updating the state of a read-only container. Finally,
any changes to the members of a read-only composite value type are also ignored when updating
the state of such a composite value.

ODB automatically treatxonst data members as read-only. For example, the following
person object is equivalent to the above declaration for the database persistence purposes:

#pragma db object
class person

{

const date born_; // Automatically read-only.

3

When declaring an object pointesnst , make sure to declare the pointeicaast rather than
(or in addition to) the object itself. For example:

#pragma db object
class person

{

const person* father_; // Read-write pointer to a read-only object.
person* const mother_; // Read-only pointer to a read-write object.

3

190 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.13 virtual

Note that in case of a wrapper type (Section 7.3, "Pointerblihdl Value Semantic$"), both the
wrapper and the wrapped type mustcoast in order for the ODB compiler to automatically
treat the data member as read-only. For example:

#pragma db object
class person

{

const std:;:auto_ptr<const date> born_;

3

Read-only members are useful when dealing with asynchronous changes to the state of a data
member in the database which should not be overwritten. In other cases, where the state of a date
member never changes, declaring such a member read-only allows ODB to perform more effi-
cient object updates. In such cases, however, it is conceptually more correct to declare such a date
member agonst rather than as read-only.

Note that it is also possible to declare composite value types (Section 128darly ") as
well as whole object$ (Section 12.1.4eddonly ") as read-only.

12.4.13virtual

Thevirtual specifier is used to declare a virtual data member in an object, view, or composite
value type. A virtual data member is iamaginarydata member that is only used for the purpose

of database persistence. A virtual data member does not actually exist (that is, occupy space) in
the C++ class. Note also that virtual data members have nothing to do with C++ virtual functions
or virtual inheritance. Specifically, no virtual function call overhead is incurred when using
virtual data members.

To declare a virtual data member we must specify the data member name usimgriher
specifier. We must also specify the data member type withittual specifier. Finally, the

virtual data member declaration must also specify the accessor and modifier expressions, unless
suitable accessor and modifier functions can automatically be found by the ODB compiler
(Section 12.4.5,det /set /access "). For example:

#pragma db object
class person

{

/I Transient real data member that actually stores the data.
I

#pragma db transient

std::string name_;

Revision 2.1, November 2012 C++ Object Persistence with ODB 191

12.4.13 virtual

/Il Virtual data member.
I
#pragma db member(name) virtual(std::string) access(name_)

%

From the pragma language point of view, a virtual data member behaves exactly like a normal
data member. Specifically, we can reference the virtual data member after it has been declared
and use positioned pragmas before its declaration. For example:

#pragma db object
class person

{

#pragma db transient
std::string name_;

#pragma db access(name_)
#pragma db member(name) virtual(std::string)

3

#pragma db member(person::name) column("person_name")
#pragma db index member(person::name)

We can also declare a virtual data member outside the class scope:

#pragma db object
class person

{

std::string name_;

3

#pragma db member(person::name_) transient
#pragma db member(person::name) virtual(std::string) access(name_)

While in the above examples using virtual data members doesn’t seem to yield any benefits, this
mechanism can be useful in a number of situations. As one example, consider the need to aggre-
gate or dis-aggregate a data member:

#pragma db object

class person

{

#pragma db transient
std::pair<std::string, std::string> name_;

192 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.13 virtual

#pragma db member(first) virtual(std::string) access(name__.first)
#pragma db member(last) virtual(std::string) access(name_.second)

%

We can also use virtual data members to implement composite object ids that are spread over
multiple data members:

#pragma db value
struct name

{

name () {}
name (std::string const& f, std::string const& |)

- first (f), last(l) {}

std::string first;
std::string last;

3

#pragma db object
class person

{

#pragma db transient
std::string first_;

#pragma db transient
std::string last_;

#pragma db member(name) virtual(name) id \
get(::name (this.first_, this.last)) \
set(this.first_ = (?).first; this.last_ = (?).last)

3

Another common situation that calls for virtual data members is a class that uses the pimpl idiom.
While the following code fragment outlines the idea, for details refer tpithpl example in
theodb-examples package.

#pragma db object

class person

{

public:
std::string const& name () const;
void name (std::string const&);

unsigned short age () const;
void age (unsigned short);

Revision 2.1, November 2012 C++ Object Persistence with ODB 193

12.4.13 virtual

private:
class impl;

#pragma db transient
impl* pimpl_;

#pragma db member(name) virtual(std::string) // Uses name().
#pragma db member(age) virtual(unsigned short) // Uses age().

h

The above example also shows that names used for virtual data memalpeesagdage in our
case) can be the same as the names of accessor/modifier functions. The only names that virtua
data members cannot clash with are those of other data members, virtual or real.

A common pattern in the above examples is the need to declare the real data member that actually
stores the data as transient. If all the real data members in a class are treated as transient, then w
can use the class-leveansient specifier |(Section 12.1.12t{ransient (object)?,| Section

[12.3.8, fransient (composite value)'l Section 12.2.#rdhsient (view)") instead of

doing it for each individual member. For example:

#pragma db object transient
class person

{

std::string first_; // Transient.
std::string last_; // Transient.

#pragma db member(name) virtual(name) ...

%

The ability to treat all the real data members as transient becomes more important if we don’t
know the names of these data members. This is often the case when we are working with
third-party types that document the accessor and modifier functions but not the names of their
private data members. As an example, considerpthiat class defined in a third-party
<point> header file:

class point

{
public:

point ();
point (int x, int y);

int x () const;
inty () const;

void x (int);
void y (int);

194 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.14 inverse

private:
3

To convert this class to an ODB composite value type we could create the
point-mapping.hxx file with the following content:

#include <point>

#pragma db value(point) transient definition
#pragma db member(point::x) virtual(int)
#pragma db member(point:.y) virtual(int)

Virtual data members can be of simple value, composite value, container, or object pointer types.
They can be used in persistent classes, composite value types, and views.

12.4.14inverse

The inverse specifier specifies that the data member of an object pointer or a container of
object pointers type is an inverse side of a bidirectional object relationship. The single required
argument to this specifier is the corresponding data member name in the referenced object. For
example:

using std::trl::shared_ptr;
using std::trl::weak_ptr;

class person;

#pragma db object pointer(shared_ptr)
class employer

{

std::vector<shared_ptr<person> > employees_;

3

#pragma db object pointer(shared_ptr)
class person

{

#pragma db inverse(employee)
weak_ptr<employer> employer_;

3

Revision 2.1, November 2012 C++ Object Persistence with ODB 195

12.4.15 version

An inverse member does not have a corresponding column or, in case of a container, table in the
resulting database schema. Instead, the column or table from the referenced object is used to
retrieve the relationship information. Only ordered and set containers can be used for inverse
members. If an inverse member is of an ordered container type, it is automatically marked as
unordered| (Section 12.4.18fordered ").

For a more detailed discussion of inverse members, reffer to Section 6.2, "Bidirectional Relation-

[shipst.
12.4.15version

Theversion specifier specifies that the data member stores the object version used to support
optimistic concurrency. If a class has a version data member, then it must also be declared as
having the optimistic concurrency model using thgimistic pragma [(Section 12.1.%,
['optimistic "). For example:

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

I3

A version member must be of an integral C++ type and must map to an integer or similar
database type. Note also that object versions are not reused. If you have a high update frequency
then care must be taken not to run out of versions. In such situations, using
unsigned long long as the version type is a safe choice.

For a more detailed discussion of optimistic concurrency, ref¢r to Chapter 11, "Opt|mistic

12.4.16index

Theindex specifier instructs the ODB compiler to define a database index for the data member.
For example:

#pragma db object
class person

{

#pragma db index
std::string name_;

I3

196 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.17 unique

For more information on defining database indexes, ref¢r to Section 12.6, "Index Definition

12.4.17unique

Theindex specifier instructs the ODB compiler to define a unique database index for the data
member. For example:

#pragma db object
class person

{

#pragma db unique
std::string name_;

3

For more information on defining database indexes, ref¢r to Section 12.6, "Index Definition

12.4.18unordered

The unordered specifier specifies that the member of an ordered container type should be
stored unordered in the database. The database table for such a member will not contain the index
column and the order in which elements are retrieved from the database may not be the same a
the order in which they were stored. For example:

#pragma db object
class person

{

#pragma db unordered
std::vector<std::string> nicknames_;

3

For a more detailed discussion of ordered containers and their storage in the database, refer to
[Section 5.1, "Ordered Containgrs".

12.4.1%able

The table specifier specifies the table name that should be used to store the contents of the
container member. For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 197

12.4.20 index_type

#pragma db object
class person

{

#pragma db table("nicknames")
std::vector<std::string> nicknames_;

%

If the table name is not specified, then the container table name is constructed by concatenating
the object’s table name, underscore, and the public member name. The public member name is
obtained by removing the common member name decorations, such as leading and trailing under-
scores, then_ prefix, etc. In the example above, without thble specifier, the container’s

table name would have beparson_nicknames

Thetable specifier can also be used for members of composite value types. In this case it spec-
ifies the table name prefix for container members inside the composite value type. Refer to
[Section 7.2.2, "Composite Value Column and Table Ngmes" for details.

The container table name can be qualified with a database schema, for example:

#pragma db object
class person

{

#pragma db table("extras.nicknames")
std::vector<std::string> nicknames_;

3

For more information on database schemas and the format of the qualified names], refer o Section
(12.1.8, 5chema"}

12.4.20index_type

Theindex_type specifier specifies the native database type that should be used for an ordered
container’s index column of the data member. The semantiocslek_type are similar to

those of thaype specifier|(Section 12.4.3type "). The native database type is expected to be

an integer type. For example:

#pragma db object
class person

{

#pragma db index_type("SMALLINT UNSIGNED")
std::vector<std::string> nicknames_;

3

198 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.21 key_type

12.4.21key type

The key _type specifier specifies the native database type that should be used for a map
container’s key column of the data member. The semantksyotype are similar to those of
thetype specifier|(Section 12.4.3type "). For example:

#pragma db object
class person

{

#pragma db key_type("INT UNSIGNED")
std::map<unsigned short, float> age_weight_map_;

h
12.4.22value_type

The value_type specifier specifies the native database type that should be used for a
container’s value column of the data member. The semanticaleé type are similar to
those of thaype specifier|(Section 12.4.3type "). For example:

#pragma db object
class person

{

#pragma db value_type("VARCHAR(255)")
std::vector<std::string> nicknames_;

%

Thevalue _null andvalue_not_null (Section 12.4.23,
['value null /value not null ") specifiers can be used to control the NULL semantics of
a value column.

12.4.23value_null /value_not_null

The value_null andvalue_not_null specifiers specify that a container’s element value
for the data member can or cannotNidLL, respectively. The semantics \ailue_null and
value_not_null are similar to those of thaull andnot_null specifiers|(Section 12.4.6,

['null_/not_null _"). For example:

using std::trl::shared_ptr;

#pragma db object
class person

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 199

12.4.24 id_options

h

#pragma db object
class account

{

#pragma db value_not_null
std::vector<shared_ptr<person> > holders_;

%

For set and multiset containefs (Section 5.2, "Set and Multiset Contgainers") the element value is
automatically treated as not allowingN&JLL value.

12.4.24id_options

Theid_options specifier specifies additional column definition options that should be used
for a container’s id column of the data member. For example:

#pragma db object
class person

{

#pragma db id options("COLLATE binary")
std::string name_;

#pragma db id_options("COLLATE binary")
std::vector<std::string> nicknames_;

3

The semantics afl_options are similar to those of thaptions specifier [(Section 12.4.8,

[options 7).
12.4.25index_options

The index_options specifier specifies additional column definition options that should be
used for a container’s index column of the data member. For example:

#pragma db object
class person

{

#pragma db index_options("ZEROFILL")
std::vector<std::string> nicknames_;

%

200 C++ Object Persistence with ODB Revision 2.1, November 2012

12.4.26 key_options

The semantics oindex_options are similar to those of theptions specifier [[Sectign
[12.4.8, ‘bptions ").

12.4.26key options

Thekey_options specifier specifies additional column definition options that should be used
for a container’s key column of the data member. For example:

#pragma db object
class person

{

#pragma db key_options("COLLATE binary")
std::map<std::string, std::string> properties_;

3

The semantics dfey _options are similar to those of thaptions specifier |(Section 12.4.8,

[options 7).
12.4.27value_options

The value_options specifier specifies additional column definition options that should be
used for a container’s value column of the data member. For example:

#pragma db object
class person

{

#pragma db value_options("COLLATE binary")
std::set<std::string> nicknames_;

3

The semantics ofalue_options are similar to those of theptions specifier [[Sectign
[12.4.8, ‘bptions ").

12.4.28id_column

Theid_column specifier specifies the column name that should be used to store the object id in
a container’s table for the data member. The semantids @lumn are similar to those of the
column specifier|(Section 12.4.9¢6lumn "). For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 201

12.4.29 index_column

#pragma db object
class person

{

#pragma db id_column("person_id")
std::vector<std::string> nicknames_;

%

If the column name is not specified, thaject_id is used by default.

12.4.29index_column

The index_column specifier specifies the column name that should be used to store the
element index in an ordered container's table for the data member. The semantics of
index_column are similar to those of theolumn specifier |(Section 12.4.9¢6lumn "). For
example:

#pragma db object
class person

{

#pragma db index_column("nickname_number")
std::vector<std::string> nicknames_;

3

If the column name is not specified, thadex is used by default.

12.4.30key_column

Thekey_column specifier specifies the column name that should be used to store the key in a
map container’s table for the data member. The semantkesyotolumn are similar to those
of thecolumn specifier|(Section 12.4.9¢c6lumn "). For example:

#pragma db object
class person

{

#pragma db key_column("age")
std::map<unsigned short, float> age_weight_map_;

3

If the column name is not specified, tHay is used by default.

202 C++ Object Persistence with ODB Revision 2.1, November 2012

12.5 Namespace Pragmas

12.4.31value_column

The value_column specifier specifies the column name that should be used to store the
element value in a container’s table for the data member. The semamatseofcolumn are
similar to those of theolumn specifier [(Section 12.4.9¢c6lumn "). For example:

#pragma db object
class person

{

#pragma db value_column("weight")
std::map<unsigned short, float> age_weight_map_;

3

If the column name is not specified, thealue is used by default.

12.5 Namespace Pragmas

A pragma with thenamespace qualifier describes a C++ namespace. Similar to other qualifiers,
namespace can also refer to a named C++ namespace, for example:

namespace test

{
=

#pragma db namespace(test) ...

To refer to the global namespace in tiemespace qualifier the following special syntax is
used:

#pragma db namespace()

The namespace qualifier can be optionally followed, in any order, by one or more specifiers
summarized in the table below:

Specifier Summary Section
pointer pointer type for persistent classes and views inside a namespace
table table name prefix for persistent classes inside a namespace 12.5.2
schema |database schema for persistent classes inside a namespace
session | enable/disable session support for persistent classes inside a nan|12.5.4

Revision 2.1, November 2012 C++ Object Persistence with ODB 203

12.5.1 pointer

12.5.1pointer

The pointer specifier specifies the default pointer type for persistent classes and views inside
the namespace. For example:

#pragma db namespace pointer(std::trl::shared_ptr)
namespace accounting

{
#pragma db object

class employee

{
=

#pragma db object
class employer

{

=
}

There are only two valid ways to specify a pointer withgbmter specifier at the namespace
level. We can specify the template name of a smart pointer in which case the ODB compiler will
automatically append the class name as a template argument. Or we &ato Wanote a raw
pointer.

Note also that we can always override the default pointer specified at the namespace level for any
persistent class or view inside this namespace. For example:

#pragma db namespace pointer(std::unique_ptr)
namespace accounting

{
#pragma db object pointer(std::shared_ptr)

class employee

{
=

#pragma db object
class employer

{

=
}

For a more detailed discussion of object and view pointers, rgfer to Section 3.3, "Object ahd View

[Pointers]"

204 C++ Object Persistence with ODB Revision 2.1, November 2012

12.5.2 table

12.5.2table

Thetable specifier specifies a table prefix that should be added to table names of persistent
classes inside the namespace. For example:

#pragma db namespace table("acc_")
namespace accounting

{
#pragma db object table("employees")

class employee

{
=

#pragma db object table("employers")
class employer

{

=
}

In the above example the resulting table names wildze employees andacc_employ-
ers .

The table name prefix can also be specified with-itadle-prefix ODB compiler option.
Note that table prefixes specified at the namespace level as well as with the command line option
are accumulated. For example:

#pragma db namespace() table("audit_")

#pragma db namespace table("hr_")
namespace hr

{
#pragma db object table("employees")

class employee

{

=
}

#pragma db object table("employers")
class employer

{
=

Revision 2.1, November 2012 C++ Object Persistence with ODB 205

12.6 Index Definition Pragmas

If we compile the above example with thdable-prefix test option, then the
employee class table will be calledest audit_hr_employees and employer —
test_audit_employers

Table prefixes can be used as an alternative to database scghemas (Sectiors@Rehid") if
the target database system does not support schemas.

12.5.3schema

The schema specifier specifies a database schema that should be used for persistent classes
inside the namespace. For more information on specifying a database schema[refer fo Section
(12.1.8, 5chema"]

12.5.4session

The session specifier specifies whether to enable session support for persistent classes inside
the namespace. For example:

#pragma db namespace session
namespace hr

{
#pragma db object /l Enabled.

class employee

{
=

#pragma db object session(false) // Disabled.
class employer

{

=
}

Session support is disabled by default unless-tgenerate-session ODB compiler
option is specified. Session support specified at the namespace level can be overridden on the pel
object basis| (Section 12.1.1GeSsion "). For more information on sessions, refef to Chapter

12.6 Index Definition Pragmas

While it is possible to manually add indexes to the generated database schema, it is more conve-
nient to do this as part of the persistent class definitions. A pragma withdése qualifier
describes a database index. It has the following general format:

206 C++ Object Persistence with ODB Revision 2.1, November 2012

12.6 Index Definition Pragmas

#pragma db index|[("<name>")] \
[uniqueltype("<type>")] \
[method("<method>")] \
[options("<index-options>")] \
member(<name>[, "<column-options>"])... \
members(<name>[,<name>...])...

Theindex qualifier can optionally specify the index name. If the index name is not specified,
then one is automatically derived by appending_thesuffix to the column name of the index
member. If the name is not specified and the index contains multiple members, then the index
definition is invalid.

The optionaltype , method , and options clauses specify the index type, for example
UNIQUE index method, for examplBTREE and index options, respectively. Theique

clause is a shortcut faype("UNIQUE") . Note that not all database systems support specify-
ing an index method or options. For more information on the database system-specific index
types, methods, and options, refer to Part I, "Database Sypgtems".

To specify index members we can use iember or members clauses, or a mix of the two.

The member clause allows us to specify a single index member with optional column options,
for example,"ASC" . If we need to create a composite index that contains multiple members,
then we can repeat tmember clause several times or, if the members don’t have any column
options, we can use a singigembers clause instead. Similar to the index type, method, and
options, the format of column options is database system-specific. For more details,[refér to Part
[Il, "Database Systems".

The following code fragment shows some typical examples of index definitions:

#pragma db object
class object

{

int x;
inty;
int z1;
int z2;

/I An index for member x with automatically-assigned name x_i.
I
#pragma db index member(x)

/I A unique index named y_index for member y which is sorted in

/I the descending order. The index is using the BTREE method.

I

#pragma db index("y_index") uniqgue method("BTREE") member(y, "DESC")

Revision 2.1, November 2012 C++ Object Persistence with ODB 207

12.6 Index Definition Pragmas

/I A composite BITMAP index named z_i for members z1 and z2.
I

#pragma db index("z_i") type("BITMAP") members(z1, z2)

3

ODB also offers a shortcut for defining an index with the default method and options for a single
data member. Such an index can be defined usingntiex (Section 12.4.16,ifidex ") or
unigue (Section 12.4.17 uhique ") member specifier. For example:

#pragma db object
class object

{

#pragma db index
int x;

#pragma db type("INT") unique
inty;
3

The above example is semantically equivalent to the following more verbose version:

#pragma db object
class object

{

int X;

#pragma db type("INT")
inty;

#pragma db index member(x)
#pragma db index uniqgue member(y)

h

While it is convenient to define an index inside a persistent class, it is also possible to do that out
of the class body. In this case, the index name, if specified, must be prefixed with the poten-
tially-qualified class name. For example:

namespace n

{
#pragma db object

class object

{

int x;
inty;

208 C++ Object Persistence with ODB Revision 2.1, November 2012

12.6 Index Definition Pragmas

h

/I An index for member x in persistent class object with automatically-
/[assigned name x_i.

I

#pragma db index(object) member(x)

}

/I An index named y_index for member y in persistent class n::object.
I
#pragma db index(n::object::"y_index") member(y)

It is possible to define an index on a member that is of a composite value type or on some of its
nested members. For example:

#pragma db value
struct point

{.

int x;

inty;

int z;

3

#pragma db object
class object
{
/I An index that includes all of the p1’s nested members.
I
#pragma db index
point p1;

point p2;

/I An index that includes only p2.x and p2.y.

I

#pragma db index("p2_xy_i") members(p2.x, p2.y)
3

When generating a schema for a container member (Chapter 5, "Containers"), ODB automatically
defines two indexes on the container table. One is for the object id that references the object table
and the other is for the index column in case the container is orglered (Section 5.1, "DOrdered
Containerd"). By default these indexes use the default index name, type, method, and options.
Theindex pragma allows us to customize these two indexes by recognizing the spearad

index nested member names when specified after a container member. For example:

#pragma db object
class object

{

std::vector<int> v;

Revision 2.1, November 2012 C++ Object Persistence with ODB 209

12.7 Database Type Mapping Pragmas

/I Change the container id index name.
I
#pragma db index("id_index") member(v.id)

/I Change the container index index method.
I
#pragma db index method("BTREE") member(v.index)

h

12.7 Database Type Mapping Pragmas

A pragma with themap qualifier describes a mapping between two database types. For each
database system ODB provides built-in support for a core set of database types, such as integers
strings, binary, etc. However, many database systems provide extended types such as geospatia
types, user-defined types, and collections (arrays, table types, key-value stores, etc). In order to
support such extended types, ODB allows us to map them to one of the built-in types, normally a
string or a binary. Given the text or binary representation of the data we can then extract it into
our chosen C++ data type and thus establish a mapping between an extended database type an
its C++ equivalent.

Themap pragma has the following format:

#pragma db map type("regex") as("subst") [to("subst")] [from("subst™)]

Thetype clause specifies the name of the database type that we are mapping. We will refer to it
as themapped typdrom now on. The name of the mapped type is a Perl-like regular expression
pattern that is matched in the case-insensitive mode.

Theas clause specifies the name of the database type that we are mapping the mapped type to.
We will refer to it as thenterface typefrom now on. The name of the interface type is a regular
expression substitution and should expand to a name of a database type for which ODB provides
built-in support.

The optionalto andfrom clauses specify the database conversion expressions between the
mapped type and the interface type. Theexpression converts from the interface type to the
mapped type antfom converts in the other direction. If no explicit conversion is required for
either direction, then the corresponding clause can be omitted. The conversion expressions are
regular expression substitutions. They must contain the sg@giaplaceholder which will be
replaced with the actual value to be converted. Turning on SQL statement fracing (Section 3.13,
[‘Tracing SOQL Statement Executipn") can be useful for debugging conversion expressions. This
allows you to see the substituted expressions as used in the actual statements.

As an example, the followingnap pragma maps the PostgreSQL arrajNIFEGERs to TEXT.:

210 C++ Object Persistence with ODB Revision 2.1, November 2012

12.7 Database Type Mapping Pragmas

#pragma db map type("INTEGER *\[(\d*)\]") \
as("TEXT") \
to("(?)::INTEGER[$1]") \
from("(?)::TEXT")

With the above mapping we can now have a persistent class that has a member of the PostgreSQL
array type:

#pragma db object
class object

{

#pragma db type("INTEGER]]")
std::string array_;

3

In PostgreSQL the array literal has {md,n2,...} form. As a result, we need to make sure
that we pass the correct text representation imttay _ member, for example:

object o;
o.array_ ="{1,2,3}";
db.persist (0);

Of course std::string is not the most natural representation of an array of integers in C++.
Instead,std::vector<int> would have been much more appropriate. To add support for
mapping std::vector<int> to PostgreSQLINTEGER[]] we need to provide a
value_traits specialization that implements conversion between the PostgreSQL text repre-
sentation of an array arstd::vector<int> . Below is a sample implementation:
namespace odb
{
namespace pgsql
{
template <>
class value_traits<std::vector<int>, id_string>
{
public:

typedef std::vector<int> value_type;
typedef value_type query_type;
typedef details::buffer image_type;

static void

set_value (value_type& v,
const details::buffer& b,
std::size_tn,
bool is_null)

{

v.clear ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 211

12.7 Database Type Mapping Pragmas

if (lis_null)
{
char c;
std::istringstream is (std::string (b.data (), n));

is>>c; /I'{

for (c = static_cast<char> (is.peek ()); c '="}; is >>¢)
{
v.push_back (int ());
is >> v.back ();
}
}
}

static void

set_image (details::buffer& b,
std::size_t& n,
bool& is_null,
const value_type& v)

{
is_null = false;
std::ostringstream os;

os << '{}
for (value_type::const_iterator i (v.begin ()), e (v.end ());
il=e;)
{
0S << *j;
if (++i!1=¢)
0s <<}

}
0s <<}

const std::string& s (os.str ());
n = s.size ();

if (n > b.capacity ()
b.capacity (n);

std::memcpy (b.data (), s.c_str (), n);

212 C++ Object Persistence with ODB

Revision 2.1, November 2012

12.8 C++ Compiler Warnings

Once this specialization is included in the generated code (sewajhyging example in the

odb-examples package for details), we can ussd::vector<int> instead of
std::string in our persistent class:

#pragma db object

class object

{

#pragma db type("INTEGER]]")
std::vector<int> array_;

3

If we wanted to always magid::vector<int> to PostgreSQINTEGER]] , then we could
instead write:

typedef std::vector<int> int_vector;
#pragma db value(int_vector) type("INTEGER[]")

#pragma db object
class object

{

std::vector<int> array_; // Mapped to INTEGER]].
3

While the above example only shows how to handle PostgreSQL arrays, other types in Post-
greSQL and in other databases can be supported in a similar wapdbtiests package
contains a set of tests in tkeatabase>/custom directories that, for each database, shows
how to provide custom mapping for some of the extended types.

12.8 C++ Compiler Warnings

When a C++ header file defining persistent classes and containing ODB pragmas is used to build
the application, the C++ compiler may issue warnings about pragmas that it doesn’t recognize.
There are several ways to deal with this problem. The easiest is to disable such warnings using
one of the compiler-specific command line options or warning control pragmas. This method is
described in the following sub-section for popular C++ compilers.

There are also several C++ compiler-independent methods that we can employ. The first is to use
the PRAGMA_DBmacro, defined in<odb/core.hxx> , instead of using#pragma db

directly. This macro expands to the ODB pragma when compiled with the ODB compiler and to
an empty declaration when compiled with other compilers. The following example shows how
we can use this macro:

Revision 2.1, November 2012 C++ Object Persistence with ODB 213

12.8.1 GNU C++

#include <odb/core.hxx>

PRAGMA_DB(object)
class person

{

PRAGMA_DB(id)
unsigned long id_;

%

An alternative to using th@RAGMA DBnacro is to group thé&pragma db directives in
blocks that are conditionally included into compilation only when compiled with the ODB
compiler. For example:

class person

{

unsigned long id_;

%

#ifdef ODB_COMPILER

pragma db object(person)

pragma db member(person::id) id
#endif

The disadvantage of this approach is that it can quickly become overly verbose when positioned
pragmas are used.

12.8.1 GNU C++

GNU g++ does not issue warnings about unknown pragmas unless requested wWittalthe
command line option. To disable only the unknown pragma warning, we can add the
-Wno-unknown-pragmas option afterWall , for example:

g++ -Wall -Wno-unknown-pragmas ...

12.8.2 Visual C++

Microsoft Visual C++ issues an unknown pragma warning (C4068) at warning level 1 or higher.
This means that unless we have disabled the warnings altogether (level 0), we will see this
warning.

To disable this warning via the compiler command line, we can add/t4®68 C++ compiler
option in Visual Studio 2008 and earlier. In Visual Studio 2010 and later there is now a special
GUI field where we can enter warning numbers that should be disabled. Simply enter 4068 into

214 C++ Object Persistence with ODB Revision 2.1, November 2012

12.8.3 Sun C++

this field.

We can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person

{

#pragma db id
unsigned long id_;

3

#pragma warning (pop)

12.8.3 Sun C++

The Sun C++ compiler does not issue warnings about unknown pragmas unkeasothew?2
option is specified. To disable only the unknown pragma warning we can add the
-erroff=unknownpragma option anywhere on the command line, for example:

CC +w -erroff=unknownpragma ...

12.8.4 IBM XL C++

IBM XL C++ issues an unknown pragma warning (1540-1401) by default. To disable this
warning we can add thgsuppress=1540-1401 command line option, for example:

XIC -gsuppress=1540-1401 ...

12.8.5 HP aC++

HP aC++ (aCC) issues an unknown pragma warning (2161) by default. To disable this warning
we can add theW2161 command line option, for example:

aCC +wzie1l ...

Revision 2.1, November 2012 C++ Object Persistence with ODB 215

12.8.6 Clang

12.8.6 Clang

Clang does not issue warnings about unknown pragmas unless requested witfialthe
command line option. To disable only the unknown pragma warning, we can add the
-Wno-unknown-pragmas option afterWall , for example:

clang++ -Wall -Wno-unknown-pragmas ...

We can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"

#pragma db object
class person

{

#pragma db id
unsigned long id_;

3

#pragma clang diagnostic pop

216 C++ Object Persistence with ODB Revision 2.1, November 2012

PART Il DATABASE SYSTEMS

PART Il DATABASE SYSTEMS

Part Il covers topics specific to the database system implementations and their support in ODB.
In particular, it describes the system-spedifatabase classes as well as the default mapping
between basic C++ value types and native database types. Part Il consists of the following chap-
ters.

13 [MySOL Databade
14 [SQLite Databage
15 |PostgreSQL Databdse

16 |Oracle Databage

17 [Microsoft SOL Server Database

Revision 2.1, November 2012 C++ Object Persistence with ODB 217

13 MySQL Database

13 MySQL Database

To generate support code for the MySQL database you will need to pass the
"--database mysql " (or "-d mysqgl ") option to the ODB compiler. Your application will

also need to link to the MySQL ODB runtime libratipg¢db-mysqgl). All MySQL-specific

ODB classes are defined in tbdb::mysql namespace.

13.1 MySQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and MySQL
database types. This mapping can be customized on the per-type and per-member basis using th

ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type MySQL Type Default NULL Semantics
bool TINYINT(2) NOT NULL
char TINYINT NOT NULL
signed char TINYINT NOT NULL
unsigned char TINYINT UNSIGNED | NOT NULL
short SMALLINT NOT NULL
unsigned short SMALLINT UNSIGNED| NOT NULL
int INT NOT NULL
unsigned int INT UNSIGNED NOT NULL
long BIGINT NOT NULL
unsigned long BIGINT UNSIGNED NOT NULL
long long BIGINT NOT NULL
unsigned long long BIGINT UNSIGNED NOT NULL
float FLOAT NOT NULL
double DOUBLE NOT NULL
std::string TEXT/VARCHAR(255) | NOT NULL

218

C++ Object Persistence with ODB

Revision 2.1, November 2012

13.1 MySQL Type Mapping

Note that thestd::string type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this meakistring is
mapped to th¥ ARCHAR(255) MySQL type. Otherwise, it is mappedT&XT.

The MySQL ODB runtime library also provides support for mappingsttiestring type to

the MySQL CHAR NCHAR and NVARCHARtypes, as well as for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,

unsigned char[N] , std::array<char, N> , andstd::array<unsigned char,

N> types to the MySQL BLOB types. However, these mappings are not enabled by default (in
particular, by defaultstd::vector and std::array will be treated as containers). To
enable the alternative mappings for these types we need to specify the database type explicitly
using thedb type pragmal(Section 12.4.3ype "), for example:

#pragma db object
class object

{

#pragma db type("CHAR(2)")
std::string state_;

#pragma db type("BLOB")
std::vector<char> buf_;

#pragma db type("BINARY(16)")
unsigned char uuid_[16];

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object

{

buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapped to a suitable MySQL type.
Contiguous enumerations with the zero first enumerator are mapped to the NEpNBIMtype.

All other enumerations are mappedI or INT UNSIGNED. In both cases the defalNtULL
semantics iNOT NULL For example:

Revision 2.1, November 2012 C++ Object Persistence with ODB 219

13.2 MySQL Database Class

enum color {red, green, blue};

enum taste

{

bitter = 1, // Non-zero first enumerator.
sweet,

sour =4, /I Non-contiguous.

salty

%

#pragma db object
class object

{

color color_; // Mapped to ENUM (‘red’, 'green’, 'blue’) NOT NULL.
taste taste_; // Mapped to INT UNSIGNED NOT NULL.

%

It is also possible to add support for additional MySQL types, such as geospatial types. For more
information, refer t¢ Section 12.7, "Database Type Mapping Pragmas".

13.2 MySQL Database Class

The MySQLdatabase class has the following interface:

namespace odb

{

namespace mysq|l

class database: public odb::database
{
public:
database (const char* user,
const char* passwd,
const char* db,
const char* host = 0,
unsigned int port = 0,
const char* socket = 0,
const char* charset = 0,
unsigned long client_flags = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& passwd,
const std::string& db,
const std::string& host =",
unsigned int port = 0,
const std::string* socket = 0,

const std::string& charset =",
unsigned long client_flags = 0,

220 C++ Object Persistence with ODB Revision 2.1, November 2012

std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string* passwd,
const std::string& db,
const std::string& host = ™,
unsigned int port = 0,
const std::string* socket = 0,
const std::string& charset =",
unsigned long client_flags = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& passwd,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& socket,
const std::string& charset =",
unsigned long client_flags = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string* passwd,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& socket,
const std::string& charset =",
unsigned long client_flags = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (int& argc,
char* argv[],
bool erase = false,
const std::string& charset =",
unsigned long client_flags = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const char*
user () const;

const char*
password () const;

const char*
db () const;

Revision 2.1, November 2012 C++ Object Persistence with ODB

13.2 MySQL Database Class

221

13.2 MySQL Database Class

const char*
host () const;

unsigned int
port () const;

const char*
socket () const;

const char*
charset () const;

unsigned long
client_flags () const;

public:

connection_ptr

connection ();

3
}

}

You will need to include theodb/mysgl/database.hxx> header file to make this class
available in your application.

The overloadediatabase constructors allow us to specify MySQL database parameters that
should be used when connecting to the database. In MySQlll and an empty string are
treated as the same values for all the string parameters passptord andsocket .

Thecharset argument allows us to specify the client character set, that is, the character set in
which the application will encode its text data. Note that this can be different from the MySQL
server character set. If this argument is not specified or is empty, then the default MySQL client
character set is used, normdiyinl . Commonly used values for this argument lata1
(equivalent to Windows cp1252 and similar to 1ISO-8859-1)wdf&l . For other possible values

as well as more information on character set support in MySQL, refer to the MySQL documenta-
tion.

The client_flags argument allows us to specify various MySQL client library flags. For
more information on the possible values, refer to the MySQL C API documentation. The
CLIENT_FOUND_ROW#g is always set by the MySQL ODB runtime regardless of whether it
was passed in thdient_flags argument.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

222 C++ Object Persistence with ODB Revision 2.1, November 2012

13.3 MySQL Connection and Connection Factory

--user <login>
--password <password>
--database <name>
--host <host>

--port <integer>
--socket <socket>
--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the MySQL options out of the
argv array.

This constructor throws thedb::mysql::cli_exception exception if the MySQL option
values are missing or invalid. See section Section 13.4, "MySOQL Exceptions" for more informa-
tion on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98, it is
std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

Theconnection() function returns a pointer to the MySQL database connection encapsulated
by theodb::mysql::connection class. For more information onysql::connection ,
refer tq Section 13.3, "MySOL Connection and Connection Fagtory".

13.3 MySQL Connection and Connection Factory

Themysql::connection class has the following interface:

namespace odb

{

namespace mysql

{

class connection: public odb::connection

{
public:

Revision 2.1, November 2012 C++ Object Persistence with ODB 223

13.3 MySQL Connection and Connection Factory

connection (database&);
connection (database&, MYSQL™);

MYSQL*
handle ();
3

typedef details::shared_ptr<connection> connection_ptr;

}
}

For more information on thedb::connection interface, refer tp Section 3.6, "Connectipns".
The first overloadednysql::connection constructor establishes a new MySQL connection.
The second constructor allows us to creamm@nection instance by providing an already
connected native MySQL handle. Note that te@nection instance assumes ownership of
this handle. Thénandle() accessor returns the MySQL handle corresponding to the connec-
tion.

Themysqgl::connection_factory abstract class has the following interface:

namespace odb

{

namespace mysq|

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

3
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in tbdb::mysql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

The two implementations of theonnection_factory interface provided by the MySQL
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/mysgl/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

224 C++ Object Persistence with ODB Revision 2.1, November 2012

13.3 MySQL Connection and Connection Factory

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®h&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace mysq|
{
class new_connection_factory: public connection_factory
{
public:
new_connection_factory ();
h
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace mysq|

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0,
bool ping = true);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, MYSQL*);

}!
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

k
h

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open. Tfiag argument specifies whether the factory should validate
the connection before returning it to the caller.

Revision 2.1, November 2012 C++ Object Persistence with ODB 225

13.3 MySQL Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool execeedsonnections

and there are no callers waiting for a new connection, then the pool will close the excess connec-
tions.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thie_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Connection validation (thping argument) is useful if your application may experience long
periods of inactivity. In such cases the MySQL server may close network connections that have
been inactive for too long. If during connection validation the pool factory detects that the
connection has been terminated, it silently closes it and tries to find or create another connection
instead.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tii@tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set t and connection validation enabled. The following code fragment
shows how we can pass our own connection factory instance:

#include <odb/database.hxx>

#include <odb/mysql/database.hxx>
#include <odb/mysqgl/connection-factory.hxx>

int
main (int argc, char* argv[])
{
auto_ptr<odb::mysql::connection_factory> f (
new odb::mysql::connection_pool_factory (20));

226 C++ Object Persistence with ODB Revision 2.1, November 2012

13.4 MySQL Exceptions

auto_ptr<odb::database> db (
new mysql::database (argc, argv, false, 0, f));
}

13.4 MySQL Exceptions

The MySQL ODB runtime library defines the following MySQL-specific exceptions:

namespace odb

{

namespace mysq|l

{

class database_exception: odb::database_exception

{

public:
unsigned int
error () const;

const std::string&
sqlstate () const;

const std::string&
message () const;

virtual const char*
what () const throw ();

g

class cli_exception: odb::exception

{

public:

virtual const char*

what () const throw ();

h
}

}

You will need to include theodb/mysqgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mysql::database_exception is thrown if a MySQL database operation fails.
The MySQL-specific error information is accessible via #reor() , sqlstate() , and
message() functions. All this information is also combined and returned in a human-readable
form by thewhat() function.

Revision 2.1, November 2012 C++ Object Persistence with ODB 227

13.5 MySQL Limitations

The odb::mysql::cli_exception is thrown by the command line parsing constructor of
the odb::mysql::database class if the MySQL option values are missing or invalid. The
what() function returns a human-readable description of an error.

13.5 MySQL Limitations

The following sections describe MySQL-specific limitations imposed by the current MySQL and
ODB runtime versions.

13.5.1 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. The only behaviors supported by MySQL are to either
check such constraints immediately (InnoDB engine) or to ignore foreign key constraints alto-

gether (all other engines). As a result, schemas generated by the ODB compiler for MySQL have
foreign key definitions commented out. They are retained only for documentation.

13.6 MySQL Index Definitions

When theindex pragmal(Section 12.6, "Index Definition Pragmas") is used to define a MySQL
index, thetype clause specifies the index type (for examplJQUE FULLTEXT, SPATIAL),
themethod clause specifies the index method (for examBIEREE HASH, and theoptions

clause is not used. The column options can be used to specify column length limits and the sort
order. For example:

#pragma db object
class object

{

std::string name_;

#pragma db index method("HASH") member(name_, "(100) DESC")
h

228 C++ Object Persistence with ODB Revision 2.1, November 2012

14 SQLite Database

14 SQLite Database

To generate support code for the SQLite database you will need to pass the
"--database sqlite " (or "-d sqlite ") option to the ODB compiler. Your application

will also need to link to the SQLite ODB runtime libraryib@db-sqlite). All
SQLite-specific ODB classes are defined indlde::sqlite namespace.

14.1 SQLite Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQLite
database types. This mapping can be customized on the per-type and per-member basis using th
ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type SQLite Type | Default NULL Semantics
bool INTEGER NOT NULL
char INTEGER NOT NULL
signed char INTEGER | NOT NULL
unsigned char INTEGER |NOT NULL
short INTEGER NOT NULL
unsigned short INTEGER | NOT NULL
int INTEGER NOT NULL
unsigned int INTEGER | NOT NULL
long INTEGER NOT NULL
unsigned long INTEGER NOT NULL
long long INTEGER |NOT NULL
unsigned long long INTEGER | NOT NULL
float REAL NULL
double REAL NULL
std::string TEXT NOT NULL
std::wstring (Windows only) TEXT NOT NULL

Revision 2.1, November 2012

C++ Object Persistence with ODB

229

14.1 SQLite Type Mapping

SQLite represents thidaN FLOAT value as aNULL value. As a result, columns of tfleat
anddouble types are by default declaredMidLL However, you can override this by explicitly
declaring them asNOT NULL with the db not_null pragma [(Section 12.4.6|
['null/not null).

The SQLite ODB runtime library also provides support for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,

unsigned char[N] , std::array<char, N> , andstd::array<unsigned char,

N> types to the SQLite BLOB type. However, this mapping is not enabled by default (in particu-
lar, by defaultstd::vector andstd::array will be treated as containers). To enable the
BLOB mapping for these types we need to specify the database type explicitly using the
db type pragma|(Section 12.4.3ybe "), for example:

#pragma db object
class object

{

#pragma db type("BLOB")
std::vector<char> buf_;

#pragma db type("BLOB")
unsigned char uuid_[16];

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object

{

buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapped to the SQIEGER
type with the defaulNULL semantics beinlOT NULL

Note also that SQLite only operates with signed integers and the largest value that an SQLite
database can store is a signed 64-bit integer. As a result, guesigned long and
unsigned long long values will be represented in the database as negative values.

230 C++ Object Persistence with ODB Revision 2.1, November 2012

14.2 SQLite Database Class

It is also possible to add support for additional SQLite types, susVBHERIC For more infor-
mation, refer t¢ Section 12.7, "Database Type Mapping Pragmas".

14.2 SQLite Database Class

The SQLitedatabase class has the following interface:

namespace odb

{

namespace sqlite

class database: public odb::database
{
public:
database (const std::string& name,
int flags = SQLITE_ OPEN_READWRITE,
bool foreign_keys = true,

const std::string& vfs =",
std::[auto|unique]_ptr<connection_factory> = 0);

#ifdef _WIN32
database (const std::wstring& name,
int flags = SQLITE_ OPEN_READWRITE,
bool foreign_keys = true,
const std::string& vfs =",
std::[auto|unique]_ptr<connection_factory> = 0);

#endif

database (int& argc,
char* argv(],
bool erase = false,
int flags = SQLITE_ OPEN_READWRITE,
bool foreign_keys = true,

const std::string& vfs =",
std::[auto|unique]_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const std::string&
name () const;

int
flags () const;
public:

transaction
begin_immediate ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 231

14.2 SQLite Database Class

transaction
begin_exclusive ();

public:

connection_ptr

connection ();

3
}

}

You will need to include theodb/sqlite/database.hxx> header file to make this class
available in your application.

The first constructor opens the specified SQLite databasendine argument is the database

file name to open in the UTF-8 encoding. If this argument is empty, then a temporary, on-disk
database is created. If this argument is finemory: special value, then a temporary,
in-memory database is created. Tlags argument allows us to specify SQLite opening flags.

For more information on the possible values, refer to dijge3 open_v2() function
description in the SQLite C APl documentation. Tioeeign_keys argument specifies
whether foreign key constraints checking should be enabled. See Section 14.5.3, "Fordign Key
[Constraintd" for more information on foreign keys. T¥fe argument specifies the SQLite
virtual file system module that should be used to access the database. If this argument is empty,
then the default vfs module is used. Again, refer tostilge3 _open_v2() function docu-
mentation for detail.

The following example shows how we can opentdst.db database in the read-write mode
and create it if it does not exist:

auto_ptr<odb::database> db (
new odb::sqlite::database (
"test.db",
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));

The second constructor is the same as the first except that the database name is passes &
std::wstring in the UTF-16 encoding. This constructor is only available when compiling for
Windows.

The third constructor extracts the database parameters from the command line. The following
options are recognized:

--database <name>
--create

--read-only
--options-file <file>

232 C++ Object Persistence with ODB Revision 2.1, November 2012

14.2 SQLite Database Class

By default, this constructor opens the database in the read-write 8QUETE OPEN_READ-
WRITEflag). If the--create flag is specified, then the database file is created if it does not
already exist$QLITE_OPEN_CREATHag). If the--read-only flag is specified, then the
database is opened in the read-only mo8QLITE _OPEN_READONLYlag instead of
SQLITE_OPEN_READWRITE The --options-file option allows us to specify some or

all of the database options in a file with each option appearing on a separate line followed by a
space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the SQLite options out of the
argv array.

Theflags argument has the same semantics as in the first constructor. Flags from the command
line always override the corresponding values specified with this argument.

The third constructor throws thab::sqglite::cli_exception exception if the SQLite
option values are missing or invalid. $ee Section 14.4, "SOQLite Exceptions" for more information
on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by the third constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98, it is
std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The begin_immediate() and begin_exclusive() functions are the SQLite-specific
extensions to the standandb::database::begin() function (se¢ Section 3.5, "Trangac-
ftions]). They allow us to start an immediaREGIN IMMEDIATE) and an exclusiveBEGIN
EXCLUSIVE SQLite transaction, respectively. For more information on the semantics of the
immediate and exclusive transactions, refer toBR&IN statement description in the SQLite
documentation.

The connection() function returns a pointer to the SQLite database connection encapsulated
by the odb::sqlite::connection class. For more information aglite::connec-
tion , refer td Section 14.3, "SOQLite Connection and Connection Factory".

Revision 2.1, November 2012 C++ Object Persistence with ODB 233

14.3 SQLite Connection and Connection Factory

14.3 SQLite Connection and Connection Factory

Thesqlite::connection class has the following interface:
namespace odb
{
namespace sqlite
{
class connection: public odb::connection
{
public:
connection (databaseg&, int extra_flags = 0);
connection (database&, sqlite3*);
transaction
begin_immediate ();
transaction
begin_exclusive ();
sqlite3*
handle ();
h
typedef details::shared_ptr<connection> connection_ptr;
}
}
For more information on thedb::connection interface, refer tp Section 3.6, "Connectipns".
The first overloadedqlite::connection constructor opens a new SQLite connection. The
extra_flags argument can be used to specify exgiite3_open_v2() flags that are
combined with the flags specified in treglite::database constructor. The second

constructor allows us to createcannection instance by providing an already open native
SQLite handle. Note that tliennection instance assumes ownership of this handle.

Thebegin_immediate() andbegin_exclusive() functions allow us to start an imme-

diate and an exclusive SQLite transaction on the connection, respectively. Their semantics are
equivalent to the corresponding functions defined instijige::database class [(Sectidn

[14.2, "SOLite Database Claks"). Thendle() accessor returns the SQLite handle correspond-

ing to the connection.

Thesqlite::connection_factory abstract class has the following interface:

namespace odb

{

namespace sqlite

{

class connection_factory

234 C++ Object Persistence with ODB Revision 2.1, November 2012

14.3 SQLite Connection and Connection Factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

3
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thedb::sqglite::database class constructors. The
connect() function is called whenever a database connection is requested.

The three implementations of tlmennection_factory interface provided by the SQLite
ODB runtime library aresingle_connection_factory , hew_connection_factory ,
andconnection_pool_factory . You will need to include theodb/sglite/connec-
tion-factory.hxx> header file to make theonnection_factory interface and these
implementation classes available in your application.

Thesingle_connection_factory class creates a single connection that is shared between
all the threads in an application. If the connection is currently not in use, then it is returned to the
caller. Otherwise, the caller is blocked until the connection becomes available. The
single_connection_factory class has the following interface:

namespace odb

{

namespace sqlite

{

class single_connection_factory: public connection_factory

{
public:
single_connection_factory ();

protected:
class single_connection: public connection

{

public:

single_connection (database_type&);
single_connection (database_type&, MYSQL*);

}!
typedef details::shared_ptr<single _connection> single_connection_ptr;

virtual single_connection_ptr
create ();

Revision 2.1, November 2012 C++ Object Persistence with ODB 235

14.3 SQLite Connection and Connection Factory

The create() virtual function is called when the factory needs to create the connection. By
deriving from thesingle_connection_factory class and overriding this function we can
implement custom connection establishment and configuration.

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®h&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace sqlite
{
class new_connection_factory: public connection_factory
{
public:
new_connection_factory ();
h
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace sqlite

{

class connection_pool_factory: public connection_factory
{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&, int extra_flags = 0);
pooled_connection (database_type&, sqlite3*);

}!
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

236 C++ Object Persistence with ODB Revision 2.1, November 2012

14.3 SQLite Connection and Connection Factory

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, then the pool will close the excess connec-
tions.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thie_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

By default, connections created byew_connection_factory and connec-
tion_pool_factory enable the SQLite shared cache mode and use the unlock notify func-
tionality to aid concurrency. To disable the shared cache mode you can pass the
SQLITE_OPEN_PRIVATECACHIHag when creating the database instance. For more informa-
tion on the shared cache mode refer to the SQLite documentation.

If you passNULL as the connection factory to one of tii@abase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set tb The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/sqlite/database.hxx>
#include <odb/sglite/connection-factory.hxx>

int

Revision 2.1, November 2012 C++ Object Persistence with ODB 237

14.4 SQLite Exceptions

main (int argc, char* argv([])
{
auto_ptr<odb::sqlite::connection_factory> f (
new odb::sqlite::connection_pool_factory (20));

auto_ptr<odb::database> db (
new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));
}

14.4 SQLite Exceptions

The SQLite ODB runtime library defines the following SQLite-specific exceptions:

namespace odb

{

namespace sqlite

{

class database_exception: odb::database_exception
{
public:

int

error () const

int
extended_error () const;

const std::string&
message () const;

virtual const char*
what () const throw ();

g

class cli_exception: odb::exception

{

public:

virtual const char*

what () const throw ();

h
}

}

You will need to include theodb/sglite/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::sqlite::database_exception is thrown if an SQLite database operation
fails. The SQLite-specific error information is accessible via tlror() ,
extended_error() , andmessage() functions. All this information is also combined and

returned in a human-readable form bywieat() function.

238 C++ Object Persistence with ODB Revision 2.1, November 2012

14.5 SQLite Limitations

Theodb::sqlite::cli_exception is thrown by the command line parsing constructor of
the odb::sqlite::database class if the SQLite option values are missing or invalid. The
what() function returns a human-readable description of an error.

14.5 SQLite Limitations

The following sections describe SQLite-specific limitations imposed by the current SQLite and
ODB runtime versions.

14.5.1 Query Result Caching

SQLite ODB runtime implementation does not perform query result ca¢hing (Section 4.4, ['Query
[Result}) even when explicitly requested. The SQLite APl supports interleaving execution of
multiple prepared statements on a single connection. As a result, with SQLite, it is possible to
have multiple uncached results and calls to other database functions do not invalidate them. The
only limitation of the uncached SQLite results is the unavailability ofrélalt::size()

function. If you call this function on an SQLite query result, then the
odb::result_not_cached exception|(Section 3.14, "ODB Exceptigns") is always thrown.
Future versions of the SQLite ODB runtime library may add support for result caching.

14.5.2 Automatic Assignment of Object Ids

Due to SQLite API limitations, every automatically assigned obje¢t id (Section 124td, ")
should have théNTEGER SQLite type. While SQLite will treat other integer type names (such
asINT, BIGINT , etc.) adNTEGER automatic id assignment will not work. By default, ODB
maps all C++ integral types tNTEGER This means that the only situation that requires consid-
eration is the assignment of a custom database type usidf thpe pragma|(Section 12.4.3,

['type). For example:

#pragma db object
class person

{

[H#pragma db id auto type("INT") // Will not work.
/l#pragma db id auto type("INTEGER") // Ok.

#pragma db id auto /I Ok, Mapped to INTEGER.
unsigned int id_;

%

Revision 2.1, November 2012 C++ Object Persistence with ODB 239

14.5.3 Foreign Key Constraints

14.5.3 Foreign Key Constraints

By default the SQLite ODB runtime enables foreign key constraints checRAGMA
foreign_keys=ON). You can disable foreign keys by passinglse as the
foreign_keys argument to one of thedb::sqlite::database constructors. Foreign
keys will also be disabled if the SQLite library is built without support for foreign keys
(SQLITE_OMIT_FOREIGN_KEYandSQLITE_OMIT_TRIGGERmacros) or if you are using
an SQLite version prior to 3.6.19, which does not support foreign key constraints checking.

If foreign key constraints checking is disabled or not available, then inconsistencies in object rela-

tionships will not be detected. Furthermore, usingettase _query() function (Section 3.11,
['Deleting Persistent Objecis") to delete persistent objects that contain containers will not work

correctly. Container data for such objects will not be deleted.

When foreign key constraints checking is enabled, then you may get the "foreign key constraint
failed" error while re-creating the database schema. This error is due to bugs in the SQLite DDL
foreign keys support. The recommended work-around for this problem is to temporarily disable
foreign key constraints checking while re-creating the schema. The following code fragment
shows how this can be done:

#include <odb/connection.hxx>
#include <odb/transaction.hxx>
#include <odb/schema-catalog.hxx>

odb::database& db = ...

{

odb::connection_ptr ¢ (db.connection ());
c->execute ("PRAGMA foreign_keys=0OFF");

odb::transaction t (c->begin ());
odb::schema_catalog::create_schema (db);
t.commit ();

c->execute ("PRAGMA foreign_keys=0ON");
}

Finally, ODB relies on standard SQL behavior which requires that foreign key constraints check-
ing is deferred until the transaction is committed. Default SQLite behavior is to check such
constraints immediately. As a result, when used with ODB, a custom database schema that
defines foreign key constraints must declare such constrairdiEBERRABLE INITIALLY
DEFERREDPas shown in the following example. Schemas generated by the ODB compiler meet
this requirement automatically.

240 C++ Object Persistence with ODB Revision 2.1, November 2012

14.6 SQLite Index Definitions

CREATE TABLE Employee (

employer INTEGER REFERENCES Employer(id)
DEFERRABLE INITIALLY DEFERRED);

14.5.4 Constraint Violations

Due to the granularity of the SQLite error codes, it is impossible to distinguish between the dupli-
cate primary key and other constraint violations. As a result, when making an object persistent,
the SQLite ODB runtime will translate all constraint violation errors to the
object_already_persistent exception[(Section 3.14, "ODB Exceptigns").

14.5.5 Sharing of Queries

As discussed ip Section 4.3, "Executing a Query", a query instance that does not have any
by-reference parameters is immutable and can be shared between multiple threads without
synchronization. Currently, the SQLite ODB runtime does not support this functionality. Future
versions of the library will remove this limitation.

14.6 SQLite Index Definitions

When theindex pragma|(Section 12.6, "Index Definition Pragmas") is used to define an SQLite
index, thetype clause specifies the index type (for examplsll|QUE while themethod and

options clauses are not used. The column options can be used to specify collations and the sort
order. For example:

#pragma db object
class object

{
std::string name_;

#pragma db index member(name_, "COLLATE binary DESC")
h

Index names in SQLite are database-global. To avoid hame clashes, ODB automatically prefixes
each index name with the table name on which it is defined.

Revision 2.1, November 2012 C++ Object Persistence with ODB 241

15 PostgreSQL Database

15 PostgreSQL Database

To generate support code for the PostgreSQL database you will need to pass the
"--database pgsql " (or "-d pgsgl ") option to the ODB compiler. Your application will

also need to link to the PostgreSQL ODB runtime librdigo@db-pgsgl). All Post-
greSQL-specific ODB classes are defined indtk::pgsql namespace.

ODB utilizes prepared statements extensively. Support for prepared statements was added in
PostgreSQL version 7.4 with the introduction of the messaging protocol version 3.0. For this
reason, ODB supports only PostgreSQL version 7.4 and later.

15.1 PostgreSQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and Post-
greSQL database types. This mapping can be customized on the per-type and per-member basi:

using the ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type PostgreSQL Type | Default NULL Semanticg
bool BOOLEAN NOT NULL
char SMALLINT NOT NULL
signed char SMALLINT NOT NULL
unsigned char SMALLINT NOT NULL
short SMALLINT NULL NOT NULL
unsigned short SMALLINT NOT NULL
int INTEGER NOT NULL
unsigned int INTEGER NOT NULL
long BIGINT NOT NULL
unsigned long BIGINT NOT NULL
long long BIGINT NOT NULL
unsigned long long BIGINT NOT NULL
float REAL NOT NULL
double DOUBLE PRECISION| NOT NULL
std::string TEXT NOT NULL

242

C++ Object Persistence with ODB

Revision 2.1, November 2012

15.1 PostgreSQL Type Mapping

The PostgreSQL ODB runtime library also provides support for mappingtdistring

type to the PostgreSQCHARandVARCHARYypes as well as thehar[16] array to the Post-
greSQL UUID type. There is also support for mapping tktl::vector<char>
std::vector<unsigned char> ,char[N] , unsigned char[N] ,
std::array<char, N> , and std::array<unsigned char, N> types to the Post-
greSQL BYTEAtype. However, these mappings are not enabled by default (in particular, by
default,std::vector andstd::array will be treated as containers). To enable the alterna-
tive mappings for these types we need to specify the database type explicitly usibdyjbe
pragma|(Section 12.4.3ype "), for example:

#pragma db object
class object

{

#pragma db type("CHAR(2)")
std::string state_;

#pragma db type("UUID")
char uuid_[16];

#pragma db type("BYTEA")
std::vector<char> buf _;

#pragma db type("BYTEA")
unsigned char data_[256];

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object

{

buffer buf_; // Mapped to BYTEA.
3

Additionally, by default, C++ enumerations are automatically mappdtT&GER with the
defaultNULL semantics beinlOT NULL

Note also that because PostgreSQL does not support unsigned integansijghed short ,
unsigned int , andunsigned long /unsigned long long C++ types are by default
mapped to th&MALLINT, INTEGER andBIGINT PostgreSQL types, respectively. The sign

bit of the value stored by the database for these types will contain the most significant bit of the

Revision 2.1, November 2012 C++ Object Persistence with ODB 243

15.2 PostgreSQL Database Class

actual unsigned value being persisted.

It is also possible to add support for additional PostgreSQL types, siMUBMERIC geometry
types, XML, JSON enumeration types, composite types, arrays, geospatial types, and the
key-value storeHSTORIE For more information, refer fo Section 12.7, "Database Type Mapping

15.2 PostgreSQL Database Class

The PostgreSQUatabase class has the following interface:

namespace odb
{
namespace pgsql
{
class database: public odb::database
{
public:
database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host =",
unsigned int port = 0,
const std::string& extra_conninfo =",
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host,
const std::string& socket_ext,
const std::string& extra_conninfo =",
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& conninfo,
std::[auto|unique]_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
const std::string& extra_conninfo =",
std::[auto|unique]_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:

const std::string&
user () const;

244 C++ Object Persistence with ODB Revision 2.1, November 2012

15.2 PostgreSQL Database Class

const std::string&
password () const;

const std::string&
db () const;

const std::string&
host () const;

unsigned int
port () const;

const std::string&
socket_ext () const;

const std::string&
extra_conninfo () const;

const std::string&
conninfo () const;

public:

connection_ptr

connection ();

3
}

}

You will need to include theodb/pgsqgl/database.hxx> header file to make this class
available in your application.

The overloadedatabase constructors allow us to specify the PostgreSQL database parameters
that should be used when connecting to the databas@ofheargument in the first constructor

is an integer value specifying the TCP/IP port number to connect to. A zero port number indicates
that the default port should be used. Boeket ext argument in the second constructor is a
string value specifying the UNIX-domain socket file name extension.

The third constructor allows us to specify all the database parameters as a@mmiéo

string. All other constructors accept additional database connection parameters as the
extra_conninfo argument. For more information about the format ofciieninfo string,

refer to thePQconnectdb() function description in the PostgreSQL documentation. In the
case ofextra_conninfo , all the database parameters provided in this string will take prece-
dence over those explicitly specified with other constructor arguments.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

Revision 2.1, November 2012 C++ Object Persistence with ODB 245

15.3 PostgreSQL Connection and Connection Factory

--user <login> | --username <login>
--password <password>

--database <name> | --dbname <name>
--host <host>

--port <integer>

--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the PostgreSQL options out of
theargv array.

This constructor throws thedb::pgsql::cli_exception exception if the PostgreSQL
option values are missing or invalid. See se¢tion Section 15.4, "PostgreSOL Excgeptions" for more
information on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98, it is
std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance. Note that trenninfo() accessor returns a completmninfo string

which includes parameters that were explicitly specified with the various constructor arguments,
as well as the extra parameters passed in déR@ga_conninfo argument. The
extra_conninfo() accessor will return theconninfo string as passed in the
extra_conninfo argument.

Theconnection() function returns a pointer to the PostgreSQL database connection encapsu-

lated by the odb::pgsqgl::connection class. For more information on
pgsql::connection , refer to[Section 15.3, "PostgreSQL Connection and Conneftion
[Factoryt.

15.3 PostgreSQL Connection and Connection Factory

Thepgsqgl::connection class has the following interface:

246 C++ Object Persistence with ODB Revision 2.1, November 2012

15.3 PostgreSQL Connection and Connection Factory

namespace odb

{
namespace pgsql
{
class connection: public odb::connection
{
public:
connection (database&);
connection (database&, PGconn?);
PGconn*
handle ();
h
typedef details::shared_ptr<connection> connection_ptr;
}
}
For more information on thedb::connection interface, refer tp Section 3.6, "Connectipns".
The first overloadeggsql::connection constructor establishes a new PostgreSQL connec-

tion. The second constructor allows us to createomnection instance by providing an
already connected native PostgreSQL handle. Note thataheection instance assumes
ownership of this handle. Thendle() accessor returns the PostgreSQL handle corresponding
to the connection.

Thepgsql::connection_factory abstract class has the following interface:

namespace odb

{

namespace pgsql

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

3
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thdb::pgsql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

Revision 2.1, November 2012 C++ Object Persistence with ODB 247

15.3 PostgreSQL Connection and Connection Factory

The two implementations of tlmnnection_factory interface provided by the PostgreSQL
ODB runtime arenew_connection_factory and connection_pool_factory . You
will need to include thecodb/pgsql/connection-factory.hxx> header file to make
the connection_factory interface and these implementation classes available in your appli-
cation.
The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®h&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace pgsql
{

class new_connection_factory: public connection_factory

{

public:

new_connection_factory ();

%
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace pgsql

{

class connection_pool_factory: public connection_factory
{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, PGconn®);

}!
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

248 C++ Object Persistence with ODB Revision 2.1, November 2012

15.3 PostgreSQL Connection and Connection Factory

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If the_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tii@abase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set tb The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/pgsqgl/database.hxx>
#include <odb/pgsgl/connection-factory.hxx>

int
main (int argc, char* argv[])
{
auto_ptr<odb::pgsqgl::connection_factory> f (
new odb::pgsql::connection_pool_factory (20));

auto_ptr<odb::database> db (

new pgsql::database (argc, argv, false, ", f));

}

Revision 2.1, November 2012 C++ Object Persistence with ODB 249

15.4 PostgreSQL Exceptions

15.4 PostgreSQL Exceptions

The PostgreSQL ODB runtime library defines the following PostgreSQL-specific exceptions:

namespace odb

{

namespace pgsql

class database_exception: odb::database_exception

{

public:
const std::string&
message () const;

const std::string&
sqlstate () const;

virtual const char*
what () const throw ();

g

class cli_exception: odb::exception

{

public:

virtual const char*

what () const throw ();

h
}

}

You will need to include thecodb/pgsqgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::pgsql::database_exception is thrown if a PostgreSQL database operation
fails. The PostgreSQL-specific error information is accessible viantkessage() and
sqlstate() functions. All this information is also combined and returned in a human-readable
form by thewhat() function.

The odb::pgsql::cli_exception is thrown by the command line parsing constructor of
the odb::pgsql::database class if the PostgreSQL option values are missing or invalid.
Thewhat() function returns a human-readable description of an error.

250 C++ Object Persistence with ODB Revision 2.1, November 2012

15.5 PostgreSQL Limitations

15.5 PostgreSQL Limitations

The following sections describe PostgreSQL-specific limitations imposed by the current Post-
greSQL and ODB runtime versions.

15.5.1 Query Result Caching

The PostgreSQL ODB runtime implementation will always return a cached query[result {Section
[4.4, "Query Resull") even when explicitly requested not to. This is a limitation of the PostgreSQL
client library (ibpg) which does not support uncached (streaming) query results.

15.5.2 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. Default PostgreSQL behavior is to check such

constraints immediately. As a result, when used with ODB, a custom database schema that
defines foreign key constraints must declare such constraintd$lHALLY DEFERRED , as

shown in the following example. Schemas generated by the ODB compiler meet this requirement
automatically.

CREATE TABLE Employee (

employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);

15.5.3 Unique Constraint Violations

Due to the granularity of the PostgreSQL error codes, it is impossible to distinguish between the
duplicate primary key and other unique constraint violations. As a result, when making an object
persistent, the PostgreSQL ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception[(Section 3.14, "ODB Exceptigns").

15.5.4 Date-Time Format

ODB expects the PostgreSQL server to use integers as a binary format for the date-time types,
which is the default for most PostgreSQL configurations. When creating a connection, ODB
examines theinteger_datetimes PostgreSQL server parameter and if itfadse
odb::pgsql::database_exception is thrown. You may check the value of this parame-

ter for your server by executing the following SQL query:

SHOW integer_datetimes

Revision 2.1, November 2012 C++ Object Persistence with ODB 251

15.6 PostgreSQL Index Definitions

15.5.5 Timezones

ODB does not currently natively support the PostgreSQL date-time types with timezone informa-
tion. However, these types can be accessed by mapping them to one of the natively supported
types, as discussed[in Section 12.7, "Database Type Mapping Pjagmas".

15.5.6NUMERICType Support

Support for the PostgreSQIUUMERICtype is limited to providing a binary buffer containing the
binary representation of the value. For more information on the binary format used to store
NUMERICvalues refer to the PostgreSQL documentation. An alternative approach to accessing
NUMERICvalues is to map this type to one of the natively supported ones, as discussed in
[Section 12.7, "Database Type Mapping Pragmas".

15.6 PostgreSQL Index Definitions

When theindex pragma|(Section 12.6, "Index Definition Pragmas") is used to define a Post-
greSQL index, theype clause specifies the index type (for examplBlIQUB, the method

clause specifies the index method (for exampBlEREE HASH GIN, etc.), and theptions

clause specifies additional index options, such as storage parameters, table spaces, and the
WHERIpredicate. To support the definition of concurrent indexedyfiee clause can end with

the wordCONCURRENTL(Yipper and lower cases are recognized). The column options can be
used to specify collations, operator classes, and the sort order. For example:

#pragma db object
class object

{

std::string name_;

#pragma db index \
type("UNIQUE CONCURRENTLY") \
method("HASH") \
member(name_, "DESC") \

options("WITH(FILLFACTOR = 80)")
h

Index names in PostgreSQL are schema-global. To avoid name clashes, ODB automatically
prefixes each index name with the table name on which it is defined.

252 C++ Object Persistence with ODB Revision 2.1, November 2012

16 Oracle Database

To generate support

"--database oracle

code for
" (or "-d oracle
will also need to link to the Oracle ODB runtime librarjibddb-oracle
Oracle-specific ODB classes are defined indtib::oracle

16.1 Oracle Type Mapping

The following table summarizes the default mapping between basic C++ value types and Oracle
database types. This mapping can be customized on the per-type and per-member basis using th

the Oracle database you will
") option to the ODB compiler. Your application
). All

ODB Pragma Languagge (Chapter 12, "ODB Pragma Language").

namespace.

C++ Type Oracle Type Default NULL Semantics
bool NUMBER(1) NOT NULL
char NUMBER(3) NOT NULL
signed char NUMBER(3) NOT NULL
unsigned char NUMBER(3) NOT NULL
short NUMBER(5) NOT NULL
unsigned short NUMBER(5) NOT NULL
int NUMBER(10) NOT NULL
unsigned int NUMBER(10) NOT NULL
long NUMBER(19) NOT NULL
unsigned long NUMBER(20) NOT NULL
long long NUMBER(19) NOT NULL
unsigned long long NUMBER(20) NOT NULL
float BINARY_FLOAT |NOT NULL
double BINARY_DOUBLE NOT NULL
std::string VARCHAR2(512) | NULL

Revision 2.1, November 2012

C++ Object Persistence with ODB

16 Oracle Database

to pass

253

16.1 Oracle Type Mapping

In Oracle empt?ARCHARZaNnd NVARCHAR2trings are represented adNBLL value. As a
result, columns of thetd::string type are by default declared MYLL except for primary
key columns. However, you can override this by explicitly declaring theMCas NULL with
the db not_null pragma |(Section 12.4.6ndll/not_null "). This also means that for
object ids that are mapped to these Oracle types, an empty string is an invalid value.

The Oracle ODB runtime library also provides support for mappingtthestring type to

the OracleCHAR NCHARNVARCHAR2CLOBand NCLOBtypes, as well as for mapping the
std::vector<char> , std::vector<unsigned char> , char[N] ,

unsigned char[N] , std::array<char, N> , andstd::array<unsigned char,

N> types to the OraclBLOBandRAWYypes. However, these mappings are not enabled by default

(in particular, by defaultstd::vector andstd::array will be treated as containers). To
enable the alternative mappings for these types we need to specify the database type explicitly
using thedb type pragmal(Section 12.4.3ype "), for example:

#pragma db object
class object

{
#pragma db type ("CLOB")
std::string str_;

#pragma db type("BLOB")
std::vector<char> buf _;

#pragma db type("RAW(16)")
unsigned char uuid_[16];
3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object

{

buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapp&dJtdBER(10) with the
defaultNULL semantics beinlOT NULL

254 C++ Object Persistence with ODB Revision 2.1, November 2012

16.2 Oracle Database Class

It is also possible to add support for additional Oracle types, suMasgeospatial types,
user-defined types, and collections (arrays, table types). For more information, Section
[12.7, "Database Type Mapping Pragmas".

16.2 Oracle Database Class

The Oracledatabase class encapsulates the OCI environment handle as well as the database
connection string and user credentials that are used to establish connections to the database. It ha
the following interface:

namespace odb

{

namespace oracle

class database: public odb::database

{

public:

database (const std::string& user,

const std::string& password,
const std::string& db,
ub2 charset =0,
ub2 ncharset = 0,
OCIEnv* environment = 0,
std::[autoJunique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& service,
const std::string& host,
unsigned int port = 0,
ub2 charset = 0,
ub2 ncharset = 0,
OCIEnv* environment = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
ub2 charset = 0,
ub2 ncharset = 0,
OCIEnv* environment = 0,
std::[autoJunique]_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:

const std::string&
user () const;

Revision 2.1, November 2012 C++ Object Persistence with ODB 255

16.2 Oracle Database Class

const std::string&
password () const;

const std::string&
db () const;

const std::string&
service () const;

const std::string&
host () const;

unsigned int
port () const;

ub2
charset () const;

ub2
ncharset () const;

OCIEnv*
environment ();

public:

connection_ptr

connection ();

3
}

}

You will need to include theodb/oracle/database.hxx> header file to make this class
available in your application.

The overloadedlatabase constructors allow us to specify the Oracle database parameters that
should be used when connecting to the databaseddt@gument in the first constructor is a
connection identifier that specifies the database to connect to. For more information on the format
of the connection identifier, refer to the Oracle documentation.

The second constructor allows us to specify the individual components of a connection identifier
as theservice , host , andport arguments. If théost argument is empty, then localhost is
used by default. Similarly, if thgort argument is zero, then the default port is used.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

256 C++ Object Persistence with ODB Revision 2.1, November 2012

16.2 Oracle Database Class

--user <login>
--password <password>
--database <connect-id>
--service <name>

--host <host>

--port <integer>
--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value. Note that
it is invalid to specify the--database option together with--service , --host , or

--port options.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thergc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the Oracle options out of the
argv array.

This constructor throws thedb::oracle::cli_exception exception if the Oracle option
values are missing or invalid. See section Section 16.4, "Oracle Excgptions" for more information
on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

Additionally, all the constructors have tlebarset , ncharset , andenvironment argu-

ments. Thecharset argument specifies the client-side database character encoding. Character
data corresponding to ttegHAR VARCHARRandCLOBtypes will be delivered to and received
from the application in this encoding. Similarly, tmeharset argument specifies the
client-side national character encoding. Character data corresponding MCH®R NVAR-
CHAR2 andNCLOBtypes will be delivered to and received from the application in this encoding.
For the complete list of available character encoding values, refer to the Oracle documentation.
Commonly used encoding values 8#& (UTF-8),31 (ISO-8859-1), and000 (UTF-16). If the
database character encoding is not specified, theNltBe LANGenvironment/registry variable

is used. Similarly, if the national character encoding is not specified, th&iLBIeENCHAReNVi-
ronment/registry variable is used. For more information on character encodings, refer to the
OCIEnvNIsCreate() function in the Oracle Call Interface (OCIl) documentation.

The environment argument allows us to provide a custom OCI environment handle. If this
argument is noNULL, then the passed handle is used in all the OCI function calls made by this
database class instance. Note also that tte#gabase instance does not assume ownership of
the passed environment handle and this handle should be valid for the lifetimel afathase
instance. If a custom environment handle is used, thechtmset andncharset arguments

have no effect.

Revision 2.1, November 2012 C++ Object Persistence with ODB 257

16.3 Oracle Connection and Connection Factory

The last argument to all of the constructors is a pointer to the connection factory. In C++98, it is
std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The connection() function returns a pointer to the Oracle database connection encapsulated
by the odb::oracle::connection class. For more information aracle::connec-
tion , refer td Section 16.3, "Oracle Connection and Connection Fgctory".

16.3 Oracle Connection and Connection Factory

Theoracle::connection class has the following interface:

namespace odb

{

namespace oracle

{

class connection: public odb::connection

{
public:
connection (database&);
connection (database&, OCISvcCix*);

OCISvcCtx*
handle ();

OCIError*
error_handle ();

details::buffer&
lob_buffer ();

%

typedef details::shared_ptr<connection> connection_ptr;

}

}
For more information on thedb::connection interface, refer tp Section 3.6, "Connectipns".
The first overloadedracle::connection constructor creates a new OCI service context.

The OCI statement caching is enabled for the underlying session while the OCI connection
pooling and session pooling are not used. The second constructor allows us to @reatra

tion instance by providing an already connected Oracle service context. Note that the
connection instance assumes ownership of this handle.hBmelle() accessor returns the

OCI service context handle associated withdbrenection instance.

258 C++ Object Persistence with ODB Revision 2.1, November 2012

16.3 Oracle Connection and Connection Factory

An OCI error handle is allocated for eachnnection instance and is available via the
error_handle() accessor function.

Additionally, eachconnection instance maintains a large object (LOB) buffer. This buffer is
used by the Oracle ODB runtime as an intermediate storage for piecewise handling of LOB data.
By default, the LOB buffer has zero initial capacity and is expanded to 4096 bytes when the first
LOB operation is performed. If your application requires a bigger or smaller LOB buffer, you can
specify a custom capacity using tbe_buffer() accessor.

Theoracle::connection_factory abstract class has the following interface:

namespace odb

{

namespace oracle

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

3
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thedb:.oracle::database class constructors. The
connect() function is called whenever a database connection is requested.

The two implementations of theonnection_factory interface provided by the Oracle
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/oracle/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®h&onnec-
tion_factory class has the following interface:

Revision 2.1, November 2012 C++ Object Persistence with ODB 259

16.3 Oracle Connection and Connection Factory

namespace odb

{

namespace oracle

{

class new_connection_factory: public connection_factory

{

public:
new_connection_factory ();
h
k

The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace oracle

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, OCISvcCtx*);

}!
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

h
h

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

260 C++ Object Persistence with ODB Revision 2.1, November 2012

16.4 Oracle Exceptions

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thie_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tii@tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set tb The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/oracle/database.hxx>
#include <odb/oracle/connection-factory.hxx>

int
main (int argc, char* argv[])

{

auto_ptr<odb::oracle::connection_factory> f (
new odb::oracle::connection_pool_factory (20));

auto_ptr<odb::database> db (

new oracle::database (argc, argv, false, 0, 0, 0, f));

}

16.4 Oracle Exceptions

The Oracle ODB runtime library defines the following Oracle-specific exceptions:

namespace odb

{

namespace oracle
class database_exception: odb::database_exception

{
public:

Revision 2.1, November 2012 C++ Object Persistence with ODB 261

16.4 Oracle Exceptions

class record

{
public:
sh4
error () const;

const std::string&
message () const;

}!
typedef std::vector<record> records;

typedef records::size_type size_type;
typedef records::const_iterator iterator;

iterator
begin () const;

iterator
end () const;

size type
size () const;

virtual const char*
what () const throw ();

k

class cli_exception: odb::exception

{

public:

virtual const char*
what () const throw ();

g

class invalid_oci_handle: odb::exception

{

public:

virtual const char*

what () const throw ();

h
}

}

You will need to include theodb/oracle/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::oracle::database_exception is thrown if an Oracle database operation
fails. The Oracle-specific error information is stored as a series of records, each containing the
error code as a signed 4-byte integer and the message string. All this information is also

262 C++ Object Persistence with ODB Revision 2.1, November 2012

16.5 Oracle Limitations

combined and returned in a human-readable form bwhiad() function.

Theodb::oracle::cli_exception is thrown by the command line parsing constructor of
the odb::oracle::database class if the Oracle option values are missing or invalid. The
what() function returns a human-readable description of an error.

The odb::oracle::invalid_oci_handle is thrown if an invalid handle is passed to an
OCI function or if an OCI function was unable to allocate a handle. The former normally indi-
cates a programming error while the latter indicates an out of memory conditionh@ah@
function returns a human-readable description of an error.

16.5 Oracle Limitations

The following sections describe Oracle-specific limitations imposed by the current Oracle and
ODB runtime versions.

16.5.1 Identifier Truncation

Oracle limits the length of database identifiers (table, column, etc., names) to 30 characters. The
ODB compiler automatically truncates any identifier that is longer than 30 characters. This,
however, can lead to duplicate names. A common symptom of this problem are errors during the
database schema creation indicating that a database object with the same name already exists. T
resolve this problem we can assign custom, shorter identifiers usingbtteble and

db column pragmas| (Chapter 12, "ODB Pragma Language"). For example:

#pragma db object
class long_class_name

{

std::vector<int> long_container_x_;
std::vector<int> long_container_y _;

}1

In the above example, the names of the two container tables will be
long_class_name_long_container_x_ and

long_class_name_long_container_y . However, when truncated to 30 characters,
they both becoméong_class_name_long_container . To resolve this collision we can

assign a custom table name for each container:

#pragma db object
class long_class_name

{

#pragma db table("long_class_name_cont_x")

Revision 2.1, November 2012 C++ Object Persistence with ODB 263

16.5.2 Query Result Caching

std::vector<int> long_container_x_;

#pragma db table("long_class_name_cont_y")
std::vector<int> long_container_y _;

h
16.5.2 Query Result Caching

Oracle ODB runtime implementation does not perform query result caghing (Section 4.4,|"Query
[Result}) even when explicitly requested. The OCI API supports interleaving execution of multi-
ple prepared statements on a single connection. As a result, with OCI, it is possible to have multi-
ple uncached results and calls to other database functions do not invalidate them. The only limita-
tion of the uncached Oracle results is the unavailability ofebalt::size() function. If

you call this function on an Oracle query result, therotite:result_not_cached excep-

tion (Section 3.14, "ODB Exceptions") is always thrown. Future versions of the Oracle ODB
runtime library may add support for result caching.

16.5.3 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is
deferred until the transaction is committed. Default Oracle behavior is to check such constraints
immediately. As a result, when used with ODB, a custom database schema that defines foreign
key constraints must declare such constraint$N&BIALLY DEFERRED , as shown in the
following example. Schemas generated by the ODB compiler meet this requirement automati-
cally.

CREATE TABLE Employee (

employer NUMBER(20) REFERENCES Employer(id)
DEFERRABLE INITIALLY DEFERRED);

16.5.4 Unique Constraint Violations

Due to the granularity of the Oracle error codes, it is impossible to distinguish between the dupli-
cate primary key and other unique constraint violations. As a result, when making an object
persistent, the Oracle ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception[(Section 3.14, "ODB Exceptigns").

16.5.5 LargeFLOATand NUMBERypes

The OracleFLOAT type with a binary precision greater than 53 and fixed-gelbMBERYype

with a decimal precision greater than 15 cannot be automatically extracted into tlieat++
anddouble types. Instead, the Oracle ODB runtime uses a 21-byte buffer containing the binary
representation of a value as an image type for $UDAT and NUMBERypes. In order to
convert them into an application-specific large number representation, you will need to provide a

264 C++ Object Persistence with ODB Revision 2.1, November 2012

16.6 Oracle Index Definitions

suitablevalue_traits template specialization. For more information on the binary format
used to store thELOAT andNUMBERalues, refer to the Oracle Call Interface (OCI) documen-
tation.

An alternative approach to accessing lar®©AT and NUMBERalues is to map these type to
one of the natively supported ones, as discussdd in Section 12.7, "Database Type Mapping

Note that NUMBERype that is used to represent a floating point number (declared by specifying
NUMBERvithout any range and scale) can be extracted into thefl@at+ anddouble types.

16.5.6 Timezones

ODB does not currently support the Oracle date-time types with timezone information. However,
these types can be accessed by mapping them to one of the natively supported types, as discusse
in|Section 12.7, "Database Type Mapping Pragmas".

16.5.7LONGTypes

ODB does not support the deprecated Ora@®GandLONG RAWlata types. However, these
types can be accessed by mapping them to one of the natively supported types, as discussed ir
[Section 12.7, "Database Type Mapping Pragmas".

16.5.8 LOB Types and By-Value Accessors/Modifiers

As discussed in Section 12.4.5¢t /set /access "] by-value accessor and modifier expressions
cannot be used with data members of Oracle large object (LOB) data ByeR: CLOB and

NCLOB The Oracle ODB runtime uses streaming for reading/writing LOB data directly from/to
data members. As a result, by-reference accessors and modifiers should be used for these dat

types.

16.6 Oracle Index Definitions

When theindex pragmal(Section 12.6, "Index Definition Pragmas") is used to define an Oracle
index, thetype clause specifies the index type (for exampls|QUE BITMAP), the method

clause is not used, and tbptions clause specifies additional index properties, such as parti-
tioning, table spaces, etc. The column options can be used to specify the sort order. For example:

#pragma db object
class object

{

std::string name_;

Revision 2.1, November 2012 C++ Object Persistence with ODB 265

16.6 Oracle Index Definitions

#pragma db index \
type("BITMAP") \
member(name_, "DESC") \
options("TABLESPACE TBS1")

h

Index names in Oracle are schema-global. To avoid nhame clashes, ODB automatically prefixes
each index name with the table name on which it is defined.

266 C++ Object Persistence with ODB Revision 2.1, November 2012

17 Microsoft SQL Server Database

17 Microsoft SQL Server Database

To generate support code for the SQL Server database you will need to pass the
"--database mssql " (or "-d mssqgl ") option to the ODB compiler. Your application will

also need to link to the SQL Server ODB runtime libralipo@ib-mssqgl). All SQL
Server-specific ODB classes are defined inatlle::mssql hamespace.

17.1 SQL Server Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQL
Server database types. This mapping can be customized on the per-type and per-member basi:
using the ODB Pragma Language (Chapter 12, "ODB Pragma Language").

Revision 2.1, November 2012 C++ Object Persistence with ODB 267

17.1 SQL Server Type Mapping

C++ Type SQL Server Type Default NtiL(J:I;LSeman-

bool BIT NOT NULL

char TINYINT NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT NOT NULL

int INT NOT NULL

unsigned int INT NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

l‘gf;g”ed long BIGINT NOT NULL

float REAL NOT NULL

double FLOAT NOT NULL

std::string VARCHAR(512)/VARCHAR(256) | NOT NULL

std::wstring NVARCHAR(512)/NVARCHAR(256) | NOT NULL

GUID UNIQUEIDENTIFIER NOT NULL

Note that thestd::string andstd::wstring types are mapped differently depending on
whether a member of one of these types is an object id or not. If the member is an object id, then
for this memberstd::string is mapped tovARCHAR(256) and std::wstring — to
NVARCHAR(256). Otherwise, std::string is mapped to VARCHAR(512) and
std::wstring — to NVARCHAR(512). Note also that you can always change this mapping

using thedb type pragmal(Section 12.4.3ype).

The SQL Server ODB runtime library also provides support for mappingtthstring

type to the SQL Serve€EHARand TEXT types as well astd::wstring to NCHARand
NTEXT There is also support for mapping ttear[16] array to the SQL Servé&sNIQUEI-
DENTIFIER type as well as thgtd::vector<char> ,

268 C++ Object Persistence with ODB Revision 2.1, November 2012

17.1 SQL Server Type Mapping

std::vector<unsigned char> ,char[N] , unsigned char[N] ,

std::array<char, N> , and std::array<unsigned char, N> types to the SQL
ServerBINARY, VARBINARY andIMAGE types. However, these mappings are not enabled by
default (in particular, by defaulstd::vector andstd::array will be treated as contain-

ers). To enable the alternative mappings for these types we need to specify the database type
explicitly using thedb type pragma|(Section 12.4.3ybe "), for example:

#pragma db object
class object

{

#pragma db type ("CHAR(5)")
std::string str_;

#pragma db type("UNIQUEIDENTIFIER")
char uuid_[16];

#pragma db type("VARBINARY (max)")
std::vector<char> buf_;

#pragma db type("BINARY(256)")
unsigned char data_[256];

J3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("VARBINARY (max)")

#pragma db object
class object

{

buffer buf_; // Mapped to VARBINARY (max).
3

Additionally, by default, C++ enumerations are automatically mappdNTowith the default
NULL semantics beinOT NULL

For SQL Server, ODB handles character, national character, and binary data in two different
ways depending on its maximum length. If the maximum length (in bytes) is less than or equal to
the limit specified with the-mssql-short-limit ODB compiler option (1024 by default),

then it is treated ashort data otherwise —ong data For short data ODB pre-allocates an inter-
mediate buffer of the maximum size and binds it directly to a parameter or result column. This
way the underlying database APl (ODBC) can read/write directly from/to this buffer. In the case
of long data, the data is read/written in chunks usingSQ&GetData() /SQLPutData()

Revision 2.1, November 2012 C++ Object Persistence with ODB 269

17.1 SQL Server Type Mapping

ODBC functions. While the long data approach reduces the amount of memory used by the appli-
cation, it may require greater CPU resources.

Long data has a number of limitations. In particular, when setting a custom short data limit, make
sure that it is sufficiently large so that no object id in the application is treated as long data. It is
also impossible to load an object or view with long data more than once as part of a query result
iteration [Section 4.4, "Query Result"). Any such attempt will result in the
odb::mssql::long_data_reload exception [(Section 17.4, "SOL Server Exceptipns").

For example:

#pragma db object
class object

{

int num_;

#pragma db type("VARCHAR(max)") // Long data.
std::string str_;

I3

typedef odb::query<object> query;
typedef odb::result<object> result;

transaction t (db.begin ());

result r (db.query<object> (query::num < 100));

for (result::iterator i (r.begin ()); i !'=r.end (); ++i)
{ if (li->str_.empty ()) // First load.
{ object o;
i.load (0); // Error: second load, long_data_reload is thrown.
}}
t.commit ();

Finally, if a native view[(Section 9.5, "Native Vieys") contains one or more long data members,
then such members should come last both in the select-list of the native SQL query and the list of
data members in the C++ class.

Note also that because SQL Server does not support unsigned integensighed short ,
unsigned int , andunsigned long /unsigned long long C++ types are by default
mapped to th&6& MALLINT, INT, andBIGINT SQL Server types, respectively. The sign bit of

the value stored by the database for these types will contain the most significant bit of the actual
unsigned value being persisted. Similarly, because there is no signed versiom INYHeT

270 C++ Object Persistence with ODB Revision 2.1, November 2012

17.2 SQL Server Database Class

SQL Server type, by defautthar andsigned char C++ types are mapped TNYINT . As
a result, the most significant bit of the value stored by the database for these types will contain the
sign bit of the actual signed value being persisted.

It is also possible to add support for additional SQL Server types, such as geospatixiypes,
and user-defined types. For more information, refdr to Section 12.7, "Database Type Mapping

17.2 SQL Server Database Class

The SQL Servedatabase class encapsulates the ODBC environment handle as well as the
server instance address and user credentials that are used to establish connections to the databas
It has the following interface:

namespace odb
{
namespace mssql
{
enum protocol
{
protocol_auto,
protocol_tcp, // TCP/IP.
protocol_lpc, // Shared memory (local procedure call).
protocol_np // Named pipes.

g

class database: public odb::database

{

public:

database (const std::string& user,

const std::string& password,
const std::string& db,
const std::string& server,
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& db,
protocol_type protocol = protocol_auto,
const std::string& host =",
const std::string& instance =",
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,

std::[auto|unique]_ptr<connection_factory> = 0);

Revision 2.1, November 2012 C++ Object Persistence with ODB 271

17.2 SQL Server Database Class

database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (const std::string& connect_string,
SQLHENYV environment = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

database (int& argc,
char* argv[],
bool erase = false,
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std::[auto|unique]_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const std::string&
user () const;

const std::string&
password () const;

const std::string&
db () const;

protocol_type
protocol () const;

const std::string&
host () const;

const std::string&
instance () const;

unsigned int
port () const;

const std::string&
server () const;

const std::string&
driver () const;

272 C++ Object Persistence with ODB Revision 2.1, November 2012

17.2 SQL Server Database Class

const std::string&
extra_connect_string () const;

const std::string&
connect_string () const;

SQLHENV
environment ();

public:

connection_ptr

connection ();

3
}

}

You will need to include theodb/mssgl/database.hxx> header file to make this class
available in your application.

The overloadedatabase constructors allow us to specify the SQL Server database parameters
that should be used when connecting to the databaseusHne and password arguments
specify the login name and passwordidér is empty, then Windows authentication is used and
thepassword argument is ignored. Ttab argument specifies the database name to open. If it
is empty, then the default database for the user is used.

Theserver argument in the first constructor specifies the SQL Server instance address in the
standard SQL Server address format:

[protocol :Jhost[\instance] , port]

Wherepr ot ocol can beicp (TCP/IP),Ipc (shared memory), arp (named pipe). If protocol

is not specified, then a suitable protocol is automatically selected based on the SQL Server Native
Client configuration. Thédost component can be a host name or an IP addressstfance is

not specified, then the default SQL Server instance is assumed. If port is not specified, then the
default SQL Server port is used (1433). Note that you would normally specify either the instance
name or the port, but not both. If both are specified, then the instance name is ignored by the SQL
Server Native Client ODBC driver. For more information on the format of the SQL Server
address, refer to the SQL Server Native Client ODBC driver documentation.

The second and third constructors allow us to specify all these address components (protocol,
host, instance, and port) as separate arguments. The third constructor always connects using
TCP/IP to the specified host and port.

Revision 2.1, November 2012 C++ Object Persistence with ODB 273

17.2 SQL Server Database Class

Thedriver argument specifies the SQL Server Native Client ODBC driver that should be used
to connect to the database. If not specified, then the latest available version is used. The following
examples show common ways of connecting to the database using the first three constructors:

/I Connect to the default SQL Server instance on the local machine
/I using the default protocol. Login as 'test’ with password 'secret’
/[and open the 'example_db’ database.
1
odb::mssql::database db1 ("test",

"secret”,

"example_db");

/I As above except use Windows authentication and open the default
/I database for this user.

I

odb::mssql::database db2 (",

"),

/I Connect to the default SQL Server instance on 'onega’ using the
/I default protocol. Login as 'test’ with password 'secret’ and open
/I the 'example_db’ database.

1

odb::mssql::database db3 ("test",
"secret”,
"example_db"
"onega");

/I As above but connect to the 'production’ SQL Server instance.

1

odb::mssql::database db4 ("test",
"secret”,
"example_db"

"onega\\production");

/l Same as above but specify protocol, host, and instance as separate
/[arguments.

1

odb::mssql::database db5 ("test",
"secret”,
"example_db",
odb::mssql::protocol_auto,
"onega",

"production™);

/I As above, but use TCP/IP as the protocol.

1

odb::mssql::database db6 ("test",
"secret”,
"example_db"

"tcp:onega\\production");

274 C++ Object Persistence with ODB Revision 2.1, November 2012

/l Same as above but using separate arguments.
I
odb::mssql::database db7 ("test",

"secret”,

"example_db",
odb::mssql::protocol_tcp,
"onega",

"production™);

/I As above, but use TCP/IP port instead of the instance name.
1
odb::mssql::database db8 ("test",

"secret”,

"example_db"

"tcp:onega,1435");

/l Same as above but using separate arguments. Note that here we
/I don’t need to specify protocol explicitly since it can only
// be TCP/IP.
1
odb::mssql::database db9 ("test",
"secret”,
"example_db",
"onega",
1435);

/I As above but use the specific SQL Server Native Client ODBC
/I driver version.
1
odb::mssql::database dbA ("test",
"secret”,
"example_db"
"tcp:onega,1435",
"SQL Server Native Client 10.0");

17.2 SQL Server Database Class

The fourth constructor allows us to pass a custom ODBC connection string that provides all the
information necessary to connect to the database. Note also that all the other constructors have
the extra_connect_string argument which can be used to specify additional ODBC
connection attributes. For more information on the format of the ODBC connection string, refer

to the SQL Server Native Client ODBC driver documentation.

The last constructor extracts the database parameters from the command line. The following

options are recognized:

Revision 2.1, November 2012 C++ Object Persistence with ODB

275

17.2 SQL Server Database Class

--user | -U <login>
--password | -P <password>
--database | -d <name>
--server | -S <address>
--driver <name>
--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the SQL Server options out of
theargv array.

This constructor throws thedb::mssql::cli_exception exception if the SQL Server
option values are missing or invalid. See segdtion Section 17.4, "SOL Server Excgptions” for more
information on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

Additionally, all the constructors have teavironment argument which allows us to provide

a custom ODBC environment handle. If this argument isNditL, then the passed handle is
used in all the ODBC function calls made by ttitdabase class instance. Note also that the
database instance does not assume ownership of the passed environment handle and this
handle should be valid for the lifetime of tti@tabase instance.

The last argument to all of the constructors is a pointer to the connection factory. In C++98, it is
std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The connection() function returns a pointer to the SQL Server database connection encapsu-

lated by the odb::mssql::connection class. For more information on
mssql::connection , refer to[Section 17.3, "SQL Server Connection and Conneg¢tion
[Factoryt.

276 C++ Object Persistence with ODB Revision 2.1, November 2012

17.3 SQL Server Connection and Connection Factory

17.3 SQL Server Connection and Connection Factory

Themssql::connection class has the following interface:

namespace odb

{

namespace mssql

{

class connection: public odb::connection

{
public:
connection (database&);
connection (database&, SQLHDBC handle);

SQLHDBC
handle ();

details::buffer&
long_data_buffer ();

h

typedef details::shared_ptr<connection> connection_ptr;

}

}
For more information on thedb::connection interface, refer tp Section 3.6, "Connectipns".
The first overloadednssql::connection constructor creates a new ODBC connection. The

created connection is configured to use the manual commit mode with multiple active result sets
(MARS) enabled. The second constructor allows us to createnaection instance by
providing an already established ODBC connection. Note thatcémmection instance
assumes ownership of this handle. Thendle() @ accessor returns the underlying ODBC
connection handle associated with to@nection instance.

Additionally, eachconnection instance maintains a long data buffer. This buffer is used by
the SQL Server ODB runtime as an intermediate storage for piecewise handling of long data. By
default, the long data buffer has zero initial capacity and is expanded to 4096 bytes when the first
long data operation is performed. If your application requires a bigger or smaller long data buffer,

you can specify a custom capacity usingltmg_data_buffer() accessor.
Themssqgl::connection_factory abstract class has the following interface:
namespace odb

{?amespace mssq|

class connection_factory

{
public:

Revision 2.1, November 2012 C++ Object Persistence with ODB 277

17.3 SQL Server Connection and Connection Factory

virtual void
database (database&) = 0;

virtual connection_ptr
connect () = 0;
3
}
}

The database() function is called when a connection factory is associated with a database
instance. This happens in tbdb::mssql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

The two implementations of trnnection_factory interface provided by the SQL Server
ODB runtime arenew_connection_factory and connection_pool_factory . You
will need to include thecodb/mssgl/connection-factory.hxx> header file to make
the connection_factory interface and these implementation classes available in your appli-
cation.
The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®h&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace mssq|
{

class new_connection_factory: public connection_factory

{

public:

new_connection_factory ();

2
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace mssql

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

278 C++ Object Persistence with ODB Revision 2.1, November 2012

17.3 SQL Server Connection and Connection Factory

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, SQLHDBC handle);

}5
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

h
h

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exteedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thien_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tii@abase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set tb The following code fragment shows how we can pass our own
connection factory instance:

Revision 2.1, November 2012 C++ Object Persistence with ODB 279

17.4 SQL Server Exceptions

#include <odb/database.hxx>

#include <odb/mssql/database.hxx>
#include <odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])

{

auto_ptr<odb::mssql::connection_factory> f (
new odb::mssql::connection_pool_factory (20));

auto_ptr<odb::database> db (
new mssql::database (argc, argv, false, ", 0, f));
}

17.4 SQL Server Exceptions

The SQL Server ODB runtime library defines the following SQL Server-specific exceptions:

namespace odb

{

namespace mssq|

{

class database_exception: odb::database_exception

{
public:
class record

{

public:
SQLINTEGER
error () const;

const std::string&
sqlstate () const;

const std::string&
message () const;

}1
typedef std::vector<record> records;

typedef records::size_type size_type;
typedef records::const_iterator iterator;

iterator
begin () const;

iterator
end () const;

280 C++ Object Persistence with ODB Revision 2.1, November 2012

17.5 SQL Server Limitations

size_type
size () const;

virtual const char*
what () const throw ();

k

class cli_exception: odb::exception

{

public:

virtual const char*
what () const throw ();

g

class long_data reload: odb::exception

{

public:

virtual const char*

what () const throw ();

h
}

}

You will need to include theodb/mssqgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mssql::database_exception is thrown if an SQL Server database operation
fails. The SQL Server-specific error information is stored as a series of records, each containing
the error code as a signed 4-byte integer, the SQLSTATE code, and the message string. All this
information is also combined and returned in a human-readable form g function.

The odb::mssql::cli_exception is thrown by the command line parsing constructor of
the odb::mssql::database class if the SQL Server option values are missing or invalid.
Thewhat() function returns a human-readable description of an error.

Theodb::mssql::long_data_reload is thrown if an attempt is made to re-load an object
or view with long data as part of a query result iteration. For more information, réfer to [Section
[17.1, "SOL Server Type Mapping".

17.5 SQL Server Limitations

The following sections describe SQL Server-specific limitations imposed by the current SQL
Server and ODB runtime versions.

Revision 2.1, November 2012 C++ Object Persistence with ODB 281

17.5.1 Query Result Caching

17.5.1 Query Result Caching

SQL Server ODB runtime implementation does not perform query result cafhing (Seclion 4.4,
['Query Result") even when explicitly requested. The ODBC API and the SQL Server Native
Client ODBC driver support interleaving execution of multiple prepared statements on a single
connection. As a result, it is possible to have multiple uncached results and calls to other database
functions do not invalidate them. The only limitation of the uncached SQL Server results is the
unavailability of theresult::size() function. If you call this function on an SQL Server
qguery result, then thedb::result_not_cached exception [(Section 3.14, "ODB EXxcgp-
ftions]) is always thrown. Future versions of the SQL Server ODB runtime library may add
support for result caching.

17.5.2 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is
deferred until the transaction is committed. The only behavior supported by SQL Server is to
check such constraints immediately. As a result, schemas generated by the ODB compiler for
SQL Server have foreign key definitions commented out. They are retained only for documenta-
tion.

17.5.3 Unique Constraint Violations

Due to the granularity of the ODBC error codes, it is impossible to distinguish between the dupli-
cate primary key and other unique constraint violations. As a result, when making an object
persistent, the SQL Server ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception[(Section 3.14, "ODB Exceptigns").

17.5.4 Multithreaded Windows Applications

Multithreaded Windows applications must use theginthread() /_beginthreadex()

and _endthread() /_endthreadex() CRT functions instead of th€reateThread()
andEndThread() Win32 functions to start and terminate threads. This is a limitation of the
ODBC implementation on Windows.

17.5.5 Affected Row Count and DDL Statements

SQL Server always returns zero as the number of affected rows for DDL statements. In particular,
this means that thdatabase::execute() (Section 3.12, "Executing Native SQL State-
[ments]) function will always return zero for such statements.

282 C++ Object Persistence with ODB Revision 2.1, November 2012

17.6 SQL Server Index Definitions

17.5.6 Long Data and Automatically Assigned Object Ids

SQL Server 2005 has a bug that causes it to fail OIN&ERT statement with th©UTPUT

clause (used to return automatically assigned object ids) if one of the inserted columns is long
data. The symptom of this bug in ODB is an exception thrown by the
database::persist() function when used on an object that contains long data and has an
automatically assigned object id. The error message reads "This operation conflicts with another
pending operation on this transaction. The operation failed.”

ODB includes a workaround for this bug which uses a less efficient method to obtain automati-
cally assigned object ids for objects that contain long data. To enable this workaround you need
to specify that the generated code will be used with SQL Server 2005 or later by passing the
--mssql-server-version 9.0 ODB compiler option.

17.5.7 Long Data and By-Value Accessors/Modifiers

As discussed in Section 12.4.5et /set /access "] by-value accessor and modifier expressions
cannot be used with data members of long data types. The SQL Server ODB runtime uses stream-
ing for reading/writing long data directly from/to data members. As a result, by-reference acces-
sors and modifiers should be used for these data types.

17.6 SQL Server Index Definitions

When theindex pragma((Section 12.6, "Index Definition Pragmas") is used to define an SQL
Server index, theype clause specifies the index type (for exampl&lIQUE CLUSTERER

the method clause is not used, and thptions clause specifies additional index properties.
The column options can be used to specify the sort order. For example:

#pragma db object
class object

{

std::string name_;

#pragma db index \
type("UNIQUE CLUSTERED") \
member(name_, "DESC") \

options("WITH(FILLFACTOR = 80)")

Revision 2.1, November 2012 C++ Object Persistence with ODB 283

PART Il PROFILES

PART Il PROFILES

Part 11l covers the integration of ODB with popular C++ frameworks and libraries. It consists of
the following chapters.

18 [Profiles Introduction
19 |Boost Profil¢
20

284 C++ Object Persistence with ODB Revision 2.1, November 2012

18 Profiles Introduction

18 Profiles Introduction

ODB profiles are a generic mechanism for integrating ODB with widely-used C++ frameworks
and libraries. A profile provides glue code which allows you to seamlessly persist various compo-
nents, such as smart pointers, containers, and value types found in these frameworks or libraries.
The code necessary to implement a profile is packaged into the so called profile library. For
example, the Boost profile implementation is provided byibtwalb-boost profile library.

Besides linking the profile library to our application, it is also necessary to let the ODB compiler
know which profiles we are using. This is accomplished with-tpeofile (or -p alias)
option. For example:

odb --profile boost ...

Some profiles, especially those covering frameworks or libraries that consist of multiple
sub-libraries, provide sub-profiles that allow you to pick and choose which components you
would like to use in your application. For example, theost profile contains the
boost/data-time sub-profile. If we are only interested in ttate time types, then we

can pas$oost/data-time instead oboost to the--profile option, for example:

odb --profile boost/date-time ...

To summarize, you will need to perform the following steps in order to make use of a profile in
your application:

1. ODB compiler: if necessary, specify the path to the profile library heatlegpion).

2. ODB compiler: specify the profile you would like to use with-tipeofile option.

3. C++ compiler: if necessary, specify the path to the profile library headers (nonhally
option).

4. Linker: link the profile library to the application.

The remaining chapters in this part of the manual describe the standard profiles provided by
ODB.

Revision 2.1, November 2012 C++ Object Persistence with ODB 285

19 Boost Profile

19 Boost Profile

The ODB profile implementation for Boost is provided by th®db-boost library and
consists of multiple sub-profiles corresponding to the individual Boost libraries. To enable all the
available Boost sub-profiles, passost as the profile name to theprofile ODB compiler
option. Alternatively, you can enable only specific sub-profiles by passing individual sub-profile
names to-profile . The following sections in this chapter discuss each Boost sub-profile in
detail. Theboost example in thedb-examples package shows how to enable and use the
Boost profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store
a specific value in a particular database system. All such exceptions derive from the
odb::boost::exception class which in turn derives from the root of the ODB exception
hierarchy, class odb::exception (Section 3.14, "ODB Exceptions"). The
odb::boost::exception class is defined in thecodb/boost/exception.hxx>

header file and has the same interfacedis:exception . The concrete exceptions that can

be thrown by the Boost sub-profiles are described in the following sections.

19.1 Smart Pointers Library

Thesmart-ptr sub-profile provides persistence support for a subset of smart pointers from the

Boost smart_ptr library. To enable only this profile, pasost/smart-ptr to the
--profile ODB compiler option.
The currently supported smart pointers laoest::shared_ptr andboost::weak_ptr

For more information on using smart pointers as pointers to objects and views, Section
[3.3, "Object and View Pointefs" and Chapter 6, "Relationghips”. For more information on using
smart pointers as pointers to values, ref¢r to Section 7.3, "PointeMAnidvValue Semanticg"”.

When used as a pointer to a value, didpst::shared_ptr is supported. For example:

#pragma db object
class person

{

#pragma db null
boost::shared_ptr<std::string> middle_name_;

g

To provide finer grained control over object relationship loading sthart-ptr ~ sub-profile

also provides the lazy counterparts for the above pointers:

odb::boost::lazy_ shared_ptr and odb::boost::lazy weak ptr . You will

need to include the&odb/boost/lazy-ptr.hxx> header file to make the lazy variants
available in your application. For the description of the lazy pointer interface and semantics refer

286 C++ Object Persistence with ODB Revision 2.1, November 2012

19.2 Unordered Containers Library

to[Section 6.4, "Lazy Pointefs". The following example shows how we can use these smart point-
ers to establish a relationship between persistent objects.

class employee;

#pragma db object
class position

{

#pragma db inverse(position_)
odb::boost::lazy weak ptr<employee> employee_;

3

#pragma db object
class employee

{

#pragma db not_null
boost::shared_ptr<position> position_;

3

Besides providing persistence support for the above smart pointessnaineptr ~ sub-profile

also changes the default pointef (Section 3.3, "Object and View Pdinters") to
boost::shared_ptr . In particular, this means that database functions that return dynami-
cally allocated objects and views will return thenbasst::shared_ptr pointers. To over-

ride this behavior, add thedefault-pointer option specifying the alternative pointer type
after the--profile option.

19.2 Unordered Containers Library

The unordered sub-profile provides persistence support for the containers from the Boost
unordered library. To enable only this profile, palssost/unordered to the--profile
ODB compiler option.

The supported containers areoost::unordered_set , boost::unordered_map ,
boost::unordered_multiset , andboost::unordered_multimap . For more infor-
mation on using the set and multiset containers with ODB refer to Section 5.2, "Set and Multiset
[Containerd". For more information on using the map and multimap containers with ODB refer to
[Section 5.3, "Map and Multimap Containgrs". The following example shows how the
unordered_set container may be used within a persistent object.

Revision 2.1, November 2012 C++ Object Persistence with ODB 287

19.3 Multi-Index Container Library

#pragma db object
class person

{

boost::unordered_set<std::string> emails_;

%

19.3 Multi-Index Container Library

Themulti-index sub-profile provides persistence support for

boost::multi_index_container from the Boost Multi-Index library. To enable only this
profile, pasboost/multi-index to the--profile ODB compiler option. The following
example shows howmwulti_index_container may be used within a persistent object.

namespace mi = boost::multi_index;

#pragma db object
class person

{

typedef
mi::multi_index_container<
std::string,
mi::indexed_by<
mi::sequenced<>,
mi::ordered_unigue<mi::identity<std::string> >
>
> emails;

emails emails_;

%

Note that amulti_index_container instantiation is stored differently in the database
depending on whether it has asgquenced orrandom_access indexes. If it does, then it is
treated as an ordered container (Section 5.1, "Ordered Containers") with the first such index
establishing the order. Otherwise, it is treated as a set confainer (Section 5.2, "Set and| Multiset

[Containers").

Note also that there is a terminology clash between ODB and Boost Multi-Index. The ODB term
ordered containertranslates to Multi-Index termsequenced inde&nd random access index
while the ODB termset containertranslates to Multi-Index termsrdered indexand hashed

index

Theemails container from the above example is stored as an ordered container. In contrast, the
following aliases container is stored as a set.

288 C++ Object Persistence with ODB Revision 2.1, November 2012

19.4 Optional Library

namespace mi = boost::multi_index;

#pragma db value
struct name

{

std::string first;
std::string last;

}1
bool operator< (const nameé&, const nameg&);

#pragma db object
class person

{

typedef
mi::multi_index_container<
name,
mi::indexed_hy<
mi::ordered_unique<mi::identity<name> >
mi::ordered_non_unique<
mi::member<name, std::string, &name::first>
>l
mi::ordered_non_unique<
mi::member<name, std::string, &name::last>
>
>

> aliases;

aliases aliases_;

%

19.4 Optional Library

Theoptional sub-profile provides persistence support fortibest::optional container
from the Boosbptional library. To enable only this profile, pakeost/optional to the
--profile ODB compiler option.

In a relational databadeoost::optional is mapped to a column that can havélldLL
value. Similar toodb::nullable (Section 7.3, "Pointers adlJLL Value Semanticg"), it can
be used to add tHeULL semantics to existing C++ types. For example:

#include <boost/optional.hpp>

#pragma db object
class person

{

Revision 2.1, November 2012 C++ Object Persistence with ODB 289

19.5 Date Time Library

std::string first_; /I TEXT NOT NULL

boost::optional<std::string> middle_; // TEXT NULL

std::string last_; /I TEXT NOT NULL
3
Note also that similar todb::nullable , when this profile is used, thdULL values are auto-
matically enabled for data members of bu®st::optional type.

19.5 Date Time Library

The date-time sub-profile provides persistence support for a subset of types from the Boost
date_time library. It is further subdivided into two sub-profilegregorian and
posix_time . The gregorian sub-profile provides support for types from the
boost::gregorian namespace, while thgosix-time sub-profile provides support for
types from theboost::posix_time namespace. To enable the entdate-time
sub-profile, pasdoost/date-time to the --profile ODB compiler option. To enable
only thegregorian sub-profile, pasboost/date-time/gregorian , and to enable only
theposix-time sub-profile, pasboost/date-time/posix-time

The only type that thgregorian sub-profile currently supports ggegorian::date . The

types currently supported by thmosix-time sub-profile areposix_time::ptime and
posix_time::time_duration . The manner in which these types are persisted is database
system dependent and is discussed in the sub-sections that follow. The example below shows how
gregorian::date may be used within a persistent object.

#pragma db object
class person

{

boost::gregorian::date date_of_birth_;

%

The concrete exceptions that can be thrown byd#te-time sub-profile implementation are
presented below.

namespace odb

{

namespace boost

{

namespace date_time

{

struct special_value: odb::boost::exception

{

virtual const char*
what () const throw ();

g

290 C++ Object Persistence with ODB Revision 2.1, November 2012

19.5.1 MySQL Database Type Mapping

struct value_out_of range: odb::boost::exception

{

virtual const char*
what () const throw ();
b
}
}
}

You will need to include theodb/boost/date-time/exceptions.hxx> header file to
make these exceptions available in your application.

The special_value exception is thrown if an attempt is made to store a Boost date-time
special value that cannot be represented in the target databaselddeout of range

exception is thrown if an attempt is made to store a date-time value that is out of the target
database range. The specific conditions under which these exceptions are thrown are database
system dependent and are discussed in more detail in the following sub-sections.

19.5.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the MySQL database types.

Boostdate_time Type MySQL Type | Default NULL Semantics
gregorian::date DATE NULL
posix_time::ptime DATETIME |NULL
posix_time::time_duration TIME NULL
The Boost special valugate time::not_a_ date time is stored as &ULL value in a

MySQL database.

The posix-time sub-profile implementation also provides support for mapping
posix_time::ptime to the TIMESTAMPMySQL type. However, this mapping has to be
explicitly requested using thdb type pragma [(Section 12.4.3type "), as shown in the
following example:

#pragma db object
class person

{

#pragma db type("TIMESTAMP") not_null
boost::posix_time::ptime updated_;

h

Revision 2.1, November 2012 C++ Object Persistence with ODB 291

19.5.2 SQLite Database Type Mapping

Some valid Boost date-time values cannot be stored in a MySQL database. An attempt to persist
any Boost date-time special value other tate _time::not_a_date_time will result in

the special_value exception. An attempt to persist a Boost date-time value that is out of the
MySQL type range will result in theut_of range exception. Refer to the MySQL documen-
tation for more information on the MySQL data type ranges.

19.5.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQLite database types.

Boostdate_time Type SQLite Type | Default NULL Semantics
gregorian::date TEXT NULL
posix_time::ptime TEXT NULL
posix_time::time_duration TEXT NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

SQLite database.

The date-time sub-profile implementation also provides support for mapmnego-

rian::date and posix_time::ptime to the INTEGER SQLite type, with the integer
value representing the UNIX time. Similarly, an alternative mapping for
posix_time::time_duration to theINTEGERtype represents the duration as a number

of seconds. These mappings have to be explicitly requested usidiy tyige pragma[(Sectign
[12.4.3, type "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("INTEGER")
boost::gregorian::date born_;

3

Some valid Boost date-time values cannot be stored in an SQLite database. An attempt to persist
any Boost date-time special value other tHate_time::not_a_date_time will result in
thespecial_value exception. An attempt to persist a negative

posix_time::time_duration value as SQLIt&EXT will result in theout_of range

exception.

292 C++ Object Persistence with ODB Revision 2.1, November 2012

19.5.3 PostgreSQL Database Type Mapping

19.5.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date time types and the PostgreSQL database types.

Boostdate_time Type PostgreSQL Type Default NULL Semantics
gregorian::date DATE NULL
posix_time::ptime TIMESTAMP NULL
posix_time::time_duration TIME NULL
The Boost special valugate time::not_a_ date time is stored as &ULL value in a
PostgreSQL databaseposix_time::ptime values representing the special values
date_time::pos_infin and date_time::neg_infin are stored as the special Post-
greSQL TIMESTAMP valuesfinity and-infinity , respectively.

Some valid Boost date-time values cannot be stored in a PostgreSQL database. The PostgreSQL
TIME type represents a clock time, and can therefore only store positive durations with a total
length of time less than 24 hours. An attempt to perspgisa_time::time_duration

value outside of this range will result in thalue_out_of range exception. An attempt to
persist aposix_time::time_duration value representing any special value other than
date_time::not_a_date_time will result in thespecial _value exception.

19.5.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the Oracle database types.

Boostdate_time Type Oracle Type Default Nt:éI;L Seman-
gregorian::date DATE NULL
posix_time::ptime TIMESTAMP NULL

o , INTERVAL DAY TO
posix_time::time_duration SECOND NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

Oracle database.

Revision 2.1, November 2012 C++ Object Persistence with ODB 293

19.5.5 SQL Server Database Type Mapping

The date-time sub-profile implementation also provides support for mapping
posix_time::ptime to theDATEOracle type with fractional seconds that may be stored in a
ptime instance being ignored. This alternative mapping has to be explicitly requested using the
db type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("DATE")
boost::posix_time::ptime updated_;

}1

Some valid Boost date-time values cannot be stored in an Oracle database. An attempt to persist ¢
gregorian::date , posix_time::ptime , Or posix_time::time_duration value
representing any special value other tdate_time::not_a_date_time will result in the

special_value exception.

19.5.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQL Server database types.

Boostdate_time Type SQL Server Type| Default NULL Semanticg
gregorian::date DATE NULL
posix_time::ptime DATETIME2 NULL
posix_time::time_duration TIME NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

SQL Server database.

Note that theDATE TIME, andDATETIMEZ2types are only available in SQL Server 2008 and
later. SQL Server 2005 only supports DATETIME and SMALLDATETIMEdate-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the
SQL Server 2005 Native Client ODBC driver.

Thedate-time sub-profile implementation provides support for mapping
posix_time::ptime to the DATETIME and SMALLDATETIME types, however, this
mapping has to be explicitly requested usingdbdéype pragmal|(Section 12.4.3ype "), as
shown in the following example:

294 C++ Object Persistence with ODB Revision 2.1, November 2012

19.6 Uuid Library

#pragma db object
class person

{

#pragma db type("DATETIME")
boost::posix_time::ptime updated_;

}1

Some valid Boost date-time values cannot be stored in an SQL Server database. An attempt to
persist agregorian::date , posix_time::ptime , Or posix_time::time_dura-

tion value representing any special value other tteta_time::not_a_date_time will

result in thespecial_value exception. The range of tAME type in SQL server is from
00:00:00.0000000 t023:59:59.9999999 . An attempt to persist a
posix_time::time_duration value out of this range will result in the
value_out_of range exception.

19.6 Uuid Library

The uuid sub-profile provides persistence support for tiugd type from the Boostuid
library. To enable only this profile, pas®ost/uuid to the --profile ODB compiler
option.

The manner in which these types are persisted is database system dependent and is discussed
the sub-sections that follow. By default a data member afidite type is mapped to a database
column withNULL enabled and niiuid instances are stored asN&JLL value. However, you

can change this behavior by declaring the data meh®dr NULL with thenot_null pragma

(Section 12.4.6,riull_/not null__"). In this case, or if the data member is an object id, the
implementation will store niluid instances as zero UUID values
({00000000-0000-0000-0000-000000000000}). For example:

#pragma db object
class object

{
boost::uuids::uuid x_; // Nil values stored as NULL.

#pragma db not_null
boost::uuids::uuid y_; // Nil values stored as zero.

%

Revision 2.1, November 2012 C++ Object Persistence with ODB 295

19.6.1 MySQL Database Type Mapping

19.6.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the Boabt type and the
MySQL database type.

Boost Type MySQL Type | Default NULL Semantics

boost::uuids::uuid BINARY(16) | NULL

19.6.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the Boabt type and the
SQLite database type.

Boost Type SQLite Type | Default NULL Semantics

boost::uuids::uuid BLOB NULL

19.6.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the Boidsttype and the Post-
greSQL database type.

Boost Type PostgreSQL Type Default NULL Semanticg

boost::uuids::uuid UulID NULL

19.6.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the Boabt type and the
Oracle database type.

Boost Type Oracle Type| Default NULL Semanticg

boost::uuids::uuid RAW(16) NULL

19.6.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the Boidisttype and the SQL
Server database type.

296 C++ Object Persistence with ODB Revision 2.1, November 2012

19.6.5 SQL Server Database Type Mapping

Boost Type

SQL Server Type

Default NULL Semantics

boost::uuids::uuid

UNIQUEIDENTIFIER

NULL

Revision 2.1, November 2012

C++ Object Persistence with ODB

297

20 Qt Profile

20 Qt Profile

The ODB profile implementation for Qt is provided by thmdb-qt library and consists of
multiple sub-profiles corresponding to the common type groups within Qt. Currently, only types
from theQtCore module are supported. To enable all the available Qt sub-profilesqtpass

the profile name to theprofile ODB compiler option. Alternatively, you can enable only
specific sub-profiles by passing individual sub-profile names-pmfile . The following
sections in this chapter discuss each Qt sub-profile in detailyfTlexample in th@db-exam-

ples package shows how to enable and use the Qt profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store
a specific value in a particular database system. All such exceptions derive from the
odb::gt::exception class which in turn derives from the root of the ODB exception hierar-
chy, classodb::exception (Section 3.14, "ODB Exceptions"). Thmlb::gt::excep-

tion class is defined in theodb/qt/exception.hxx> header file and has the same inter-
face asodb::exception . The concrete exceptions that can be thrown by the Qt sub-profiles
are described in the following sections.

20.1 Basic Types

The basic sub-profile provides persistence support for basic types defined by Qt. To enable
only this profile, pasgt/basic to the--profile ODB compiler option.

The currently supported basic types @®8tring , QByteArray , andQUuid. The manner in
which these types are persisted is database system dependent and is discussed in the sub-sectio
that follow. The example below shows h@#tring may be used within a persistent object.

#pragma db object
class Person

{

QString name_;

%

By default a data member of tJuid type is mapped to a database column With_L enabled

and nullQUuid instances are stored adldLL value. However, you can change this behavior by
declaring the data membeXOT NULL with the not_null pragma |(Section 12.4.§,
['null_/not_null__"). In this case, or if the data member is an object id, the implementation will
store nullQUuid instances as zero UUID values

({00000000-0000-0000-0000-000000000000}). For example:

298 C++ Object Persistence with ODB Revision 2.1, November 2012

20.1.1 MySQL Database Type Mapping

#pragma db object
class object

{

QUuid x_; // Null values stored as NULL.
#pragma db not_null

QUuid y_; // Null values stored as zero.

h
20.1.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the MySQL database types.

Qt Type MySQL Type Default NULL Semantics
QString TEXT/VARCHAR(255) | NULL
QByteArray | BLOB NULL
QUuid BINARY(16) NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrtsue .

Note also that th@String type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this me@®teng is
mapped to th¥ ARCHAR(255) MySQL type. Otherwise, it is mappedT&XT.

Thebasic sub-profile also provides support for mapp@§tring to theCHARNCHARand
NVARCHARIYSQL types. However, these alternative mappings have to be explicitly requested
using thedb type pragma|(Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("CHAR(2)") not_null
QString licenseState_;
h

Revision 2.1, November 2012 C++ Object Persistence with ODB 299

20.1.2 SQLite Database Type Mapping

20.1.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQLite database types.

Qt Type SQLite Type | Default NULL Semantics
QString TEXT NULL
QByteArray | BLOB NULL
QUuid BLOB NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrtsue .

20.1.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the PostgreSQL database types.

Qt Type PostgreSQL Type Default NULL Semanticg
QString TEXT NULL
QByteArray |BYTEA NULL
QUuid UuID NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

Thebasic sub-profile also provides support for mapp®8tring to theCHARandVARCHAR
PostgreSQL types. However, these alternative mappings have to be explicitly requested using the
db type pragmal(Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("CHAR(2)") not_null
QString licenseState_;

g

300 C++ Object Persistence with ODB Revision 2.1, November 2012

20.1.4 Oracle Database Type Mapping

20.1.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the Oracle database types.

Qt Type Oracle Type Default NULL Semantics
QString VARCHAR2(512) | NULL
QByteArray | BLOB NULL
QUuid RAW(16) NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrtsue .

The basic sub-profile also provides support for mappi@&tring to the CHAR NCHAR
NVARCHARCLOB andNCLOBOracle types, and for mappiaByteArray to theRAWOracle
type. However, these alternative mappings have to be explicitly requested usdiptype
pragma((Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{
#pragma db type("CLOB") not_null
QString firstName_;
#pragma db type("RAW(16)") null

QByteArray uuid_;
h

20.1.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQL Server database types.

Qt Type SQL Server Type Default NULL Semantics
QString VARCHAR(512)/VARCHAR(256) | NULL
QByteArray | VARBINARY(max) NULL
QUuid UNIQUEIDENTIFIER NULL

Revision 2.1, November 2012 C++ Object Persistence with ODB 301

20.2 Smart Pointers

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

Note also that th@String type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this me@#teng is
mapped to th’ ARCHAR(256) SQL Server type. Otherwise, it is mappe®W&RCHAR(512).

The basic sub-profile also provides support for mappi@tring to the CHAR NCHAR
NVARCHARTEXT, and NTEXT SQL Server types, and for mappi@ByteArray to the
BINARY andIMAGE SQL Server types. However, these alternative mappings have to be explic-
itly requested using thdb type pragma|(Section 12.4.3, "type"), as shown in the following
example:

#pragma db object
class Person

{

#pragma db type("NVARCHAR(256)") not_null
QString firstName_;

#pragma db type("BINARY(16)") null
QByteArray uuid_;
3

20.2 Smart Pointers

Thesmart-ptr sub-profile provides persistence support the Qt smart pointers. To enable only
this profile, pasgt/smart-ptr to the--profile ODB compiler option.

The currently supported smart pointers @@haredPointer andQWeakPointer . For more
information on using smart pointers as pointers to objects and views, refer to Section 3.3, "Object
[and View Pointers" arld Chapter 6, "Relationships”. For more information on using smart pointers
as pointers to values, refer to Section 7.3, "PointerdNaHd_Value Semanticg". When used as a
pointer to a value, onlSharedPointer is supported. For example:

#pragma db object
class person

{

#pragma db null
QSharedPointer<QString> middle_name_;

g

302 C++ Object Persistence with ODB Revision 2.1, November 2012

20.3 Containers Library

To provide finer grained control over object relationship loading sthart-ptr ~ sub-profile

also provides the lazy counterparts for the above pointetsizySharedPointer and
QLazyWeakPointer . You will need to include theodb/qt/lazy-ptr.hxx> header file

to make the lazy variants available in your application. For the description of the lazy pointer
interface and semantics referl to Section 6.4, "Lazy Pointers". The following example shows how
we can use these smart pointers to establish a relationship between persistent objects.

class Employee;

#pragma db object
class Position

{

#pragma db inverse(position_)
QLazyWeakPointer<Employee> employee_;

I3

#pragma db object
class Employee

{

#pragma db not_null
QSharedPointer<Position> position_;

I3

Besides providing persistence support for the above smart pointessnaineptr sub-profile

also changes the default pointgr (Section 3.3, "Object and View PdinterBshared-

Pointer . In particular, this means that database functions that return dynamically allocated
objects and views will return them SharedPointer pointers. To override this behavior,

add the --default-pointer option specifying the alternative pointer type after the
--profile option.

20.3 Containers Library

Thecontainer sub-profile provides persistence support for Qt containers. To enable only this
profile, pasgjt/containers to the--profile ODB compiler option.

The currently supported ordered containers @wector , QList , and QLinkedList
Supported map containers @dlap QMultiMap , QHash, andQMultiHash . The supported
set container iQSet. For more information on using containers with ODB refdr to Chapier 5,
['Containerg'. The following example shows how t@&et container may be used within a
persistent object.

Revision 2.1, November 2012 C++ Object Persistence with ODB 303

20.4 Date Time Types

#pragma db object
class Person

{

QSet<QString> emails_;
3

20.4 Date Time Types

Thedate-time sub-profile provides persistence support for the Qt date-time types. To enable
only this profile, pasgt/date-time to the--profile ODB compiler option.

The currently supported date-time types Qi@ate, QTime, andQDateTime . The manner in
which these types are persisted is database system dependent and is discussed in the sub-sectio
that follow. The example below shows h@@ate may be used within a persistent object.

#pragma db object
class Person

{

QDate dateOfBirth_;
h

The single concrete exception that can be thrown bgdteetime sub-profile implementation
is presented below.

namespace odb

{

namespace qt

{

namespace date_time

{

struct value_out_of range: odb::qt::exception

{

virtual const char*
what () const throw ();
3
}
}
}

You will need to include thecodb/qgt/date-time/exceptions.hxx> header file to
make this exception available in your application.

The value_out_of range exception is thrown if an attempt is made to store a date-time
value that is out of the target database range. The specific conditions under which it is thrown is
database system dependent and is discussed in more detail in the following sub-sections.

304 C++ Object Persistence with ODB Revision 2.1, November 2012

20.4.1 MySQL Database Type Mapping

20.4.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the MySQL database types.

Qt Date Time Type| MySQL Type | Default NULL Semantics
QDate DATE NULL
QTime TIME NULL
QDateTime DATETIME | NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

Thedate-time sub-profile implementation also provides support for mapQiDateTime to
the TIMESTAMPMySQL type. However, this mapping has to be explicitly requested using the
db type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("TIMESTAMP") not_null
QDateTime updated_;

h

Some valid Qt date-time values cannot be stored in a MySQL database. An attempt to persist a Qt
date-time value that is out of the MySQL type range will result irotlieof range excep-
tion. Refer to the MySQL documentation for more information on the MySQL data type ranges.

20.4.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQLite database types.

Qt Date Time Type| SQLite Type | Default NULL Semantics
QDate TEXT NULL
QTime TEXT NULL
QDateTime TEXT NULL

Revision 2.1, November 2012 C++ Object Persistence with ODB 305

20.4.3 PostgreSQL Database Type Mapping

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

The date-time sub-profile implementation also provides support for map@iate and
QDateTime to the SQLitedNTEGERtype, with the integer value representing the UNIX time.
Similarly, an alternative mapping fQTime to theINTEGERtype represents a clock time as the
number of seconds since midnight. These mappings have to be explicitly requested using the
db type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("INTEGER")
QDate born_;

3

Some valid Qt date-time values cannot be stored in an SQLite database. An attempt to persist any
Qt date-time value representing a negative UNIX time (any point in time prior to the
1970-01-01 00:00:00 UNIX time epoch) as an SQLINTEGER will result in the

out_of range exception.

20.4.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the PostgreSQL database types.

Qt Date Time Type| PostgreSQL Type| Default NULL Semantics
QDate DATE NULL
QTime TIME NULL
QDateTime TIMESTAMP NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

20.4.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the Oracle database types.

306 C++ Object Persistence with ODB Revision 2.1, November 2012

20.4.5 SQL Server Database Type Mapping

Qt Date Time Type Oracle Type Default NULL Semantics
QDate DATE NULL
QTime INTERVAL DAY(0) TO SECOND(3) |NULL
QDateTime TIMESTAMP(3) NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

Thedate-time sub-profile implementation also provides support for mapQiDateTime to
the DATE Oracle type with fractional seconds that may be stored @DateTime instance
being ignored. This alternative mapping has to be explicitly requested usindp type
pragma((Section 12.4.3ype "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("DATE")
QDateTime updated_;
3

20.4.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQL Server database types.

Qt Date Time Type| SQL Server Type| Default NULL Semantics
QDate DATE NULL
QTime TIME(3) NULL
QDateTime DATETIME2(3) |NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

Note that theDATE TIME, andDATETIMEZ2 types are only available in SQL Server 2008 and
later. SQL Server 2005 only supports ATETIME and SMALLDATETIMEdate-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the
SQL Server 2005 Native Client ODBC driver.

307

Revision 2.1, November 2012 C++ Object Persistence with ODB

20.4.5 SQL Server Database Type Mapping

Thedate-time sub-profile implementation provides support for map@igateTime to the
DATETIMEandSMALLDATETIMBypes, however, this mapping has to be explicitly requested
using thedb type pragma((Section 12.4.3ype "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("DATETIME")
QDateTime updated_;

3

308 C++ Object Persistence with ODB Revision 2.1, November 2012

	Preface
	About This Document
	More Information

	PART I€€ OBJECT-RELATIONAL MAPPING
	1 Introduction
	1.1 Architecture and Workflow
	1.2 Benefits
	1.3 Supported C++ Standards

	2 Hello World Example
	2.1 Declaring a Persistent Class
	2.2 Generating Database Support Code
	2.3 Compiling and Running
	2.4 Making Objects Persistent
	2.5 Querying the Database for Objects
	2.6 Updating Persistent Objects
	2.7 Defining and Using Views
	2.8 Deleting Persistent Objects
	2.9 Summary

	3 Working with Persistent Objects
	3.1 Concepts and Terminology
	3.2 Declaring Persistent Objects and Values
	3.3 Object and View Pointers
	3.4 Database
	3.5 Transactions
	3.6 Connections
	3.7 Error Handling and Recovery
	3.8 Making Objects Persistent
	3.9 Loading Persistent Objects
	3.10 Updating Persistent Objects
	3.11 Deleting Persistent Objects
	3.12 Executing Native SQL Statements
	3.13 Tracing SQL Statement Execution
	3.14 ODB Exceptions

	4 Querying the Database
	4.1 ODB Query Language
	4.2 Parameter Binding
	4.3 Executing a Query
	4.4 Query Result

	5 Containers
	5.1 Ordered Containers
	5.2 Set and Multiset Containers
	5.3 Map and Multimap Containers
	5.4 Using Custom Containers

	6 Relationships
	6.1 Unidirectional Relationships
	6.1.1 To-One Relationships
	6.1.2 To-Many Relationships

	6.2 Bidirectional Relationships
	6.2.1 One-to-One Relationships
	6.2.2 One-to-Many Relationships
	6.2.3 Many-to-Many Relationships

	6.3 Circular Relationships
	6.4 Lazy Pointers
	6.5 Using Custom Smart Pointers

	7 Value Types
	7.1 Simple Value Types
	7.2 Composite Value Types
	7.2.1 Composite Object Ids
	7.2.2 Composite Value Column and Table Names

	7.3 Pointers and NULL Value Semantics

	8 Inheritance
	8.1 Reuse Inheritance
	8.2 Polymorphism Inheritance
	8.2.1 Performance and Limitations

	8.3 Mixed Inheritance

	9 Views
	9.1 Object Views
	9.2 Table Views
	9.3 Mixed Views
	9.4 View Query Conditions
	9.5 Native Views
	9.6 Other View Features and Limitations

	10 Session
	10.1 Object Cache

	11 Optimistic Concurrency
	12 ODB Pragma Language
	12.1 Object Type Pragmas
	12.1.1 table
	12.1.2 pointer
	12.1.3 abstract
	12.1.4 readonly
	12.1.5 optimistic
	12.1.6 no_id
	12.1.7 callback
	12.1.8 schema
	12.1.9 polymorphic
	12.1.10 session
	12.1.11 definition
	12.1.12 transient

	12.2 View Type Pragmas
	12.2.1 object
	12.2.2 table
	12.2.3 query
	12.2.4 pointer
	12.2.5 callback
	12.2.6 definition
	12.2.7 transient

	12.3 Value Type Pragmas
	12.3.1 type
	12.3.2 id_type
	12.3.3 null/not_null
	12.3.4 default
	12.3.5 options
	12.3.6 readonly
	12.3.7 definition
	12.3.8 transient
	12.3.9 unordered
	12.3.10 index_type
	12.3.11 key_type
	12.3.12 value_type
	12.3.13 value_null/value_not_null
	12.3.14 id_options
	12.3.15 index_options
	12.3.16 key_options
	12.3.17 value_options
	12.3.18 id_column
	12.3.19 index_column
	12.3.20 key_column
	12.3.21 value_column

	12.4 Data Member Pragmas
	12.4.1 id
	12.4.2 auto
	12.4.3 type
	12.4.4 id_type
	12.4.5 get/set/access
	12.4.6 null/not_null
	12.4.7 default
	12.4.8 options
	12.4.9 column (object, composite value)
	12.4.10 column (view)
	12.4.11 transient
	12.4.12 readonly
	12.4.13 virtual
	12.4.14 inverse
	12.4.15 version
	12.4.16 index
	12.4.17 unique
	12.4.18 unordered
	12.4.19 table
	12.4.20 index_type
	12.4.21 key_type
	12.4.22 value_type
	12.4.23 value_null/value_not_null
	12.4.24 id_options
	12.4.25 index_options
	12.4.26 key_options
	12.4.27 value_options
	12.4.28 id_column
	12.4.29 index_column
	12.4.30 key_column
	12.4.31 value_column

	12.5 Namespace Pragmas
	12.5.1 pointer
	12.5.2 table
	12.5.3 schema
	12.5.4 session

	12.6 Index Definition Pragmas
	12.7 Database Type Mapping Pragmas
	12.8 C++ Compiler Warnings
	12.8.1 GNU C++
	12.8.2 Visual C++
	12.8.3 Sun C++
	12.8.4 IBM XL C++
	12.8.5 HP aC++
	12.8.6 Clang

	PART II€€ DATABASE SYSTEMS
	13 MySQL Database
	13.1 MySQL Type Mapping
	13.2 MySQL Database Class
	13.3 MySQL Connection and Connection Factory
	13.4 MySQL Exceptions
	13.5 MySQL Limitations
	13.5.1 Foreign Key Constraints

	13.6 MySQL Index Definitions

	14 SQLite Database
	14.1 SQLite Type Mapping
	14.2 SQLite Database Class
	14.3 SQLite Connection and Connection Factory
	14.4 SQLite Exceptions
	14.5 SQLite Limitations
	14.5.1 Query Result Caching
	14.5.2 Automatic Assignment of Object Ids
	14.5.3 Foreign Key Constraints
	14.5.4 Constraint Violations
	14.5.5 Sharing of Queries

	14.6 SQLite Index Definitions

	15 PostgreSQL Database
	15.1 PostgreSQL Type Mapping
	15.2 PostgreSQL Database Class
	15.3 PostgreSQL Connection and Connection Factory
	15.4 PostgreSQL Exceptions
	15.5 PostgreSQL Limitations
	15.5.1 Query Result Caching
	15.5.2 Foreign Key Constraints
	15.5.3 Unique Constraint Violations
	15.5.4 Date-Time Format
	15.5.5 Timezones
	15.5.6 NUMERIC Type Support

	15.6 PostgreSQL Index Definitions

	16 Oracle Database
	16.1 Oracle Type Mapping
	16.2 Oracle Database Class
	16.3 Oracle Connection and Connection Factory
	16.4 Oracle Exceptions
	16.5 Oracle Limitations
	16.5.1 Identifier Truncation
	16.5.2 Query Result Caching
	16.5.3 Foreign Key Constraints
	16.5.4 Unique Constraint Violations
	16.5.5 Large FLOAT and NUMBER Types
	16.5.6 Timezones
	16.5.7 LONG Types
	16.5.8 LOB Types and By-Value Accessors/Modifiers

	16.6 Oracle Index Definitions

	17 Microsoft SQL Server Database
	17.1 SQL Server Type Mapping
	17.2 SQL Server Database Class
	17.3 SQL Server Connection and Connection Factory
	17.4 SQL Server Exceptions
	17.5 SQL Server Limitations
	17.5.1 Query Result Caching
	17.5.2 Foreign Key Constraints
	17.5.3 Unique Constraint Violations
	17.5.4 Multithreaded Windows Applications
	17.5.5 Affected Row Count and DDL Statements
	17.5.6 Long Data and Automatically Assigned Object Ids
	17.5.7 Long Data and By-Value Accessors/Modifiers

	17.6 SQL Server Index Definitions

	PART III€€ PROFILES
	18 Profiles Introduction
	19 Boost Profile
	19.1 Smart Pointers Library
	19.2 Unordered Containers Library
	19.3 Multi-Index Container Library
	19.4 Optional Library
	19.5 Date Time Library
	19.5.1 MySQL Database Type Mapping
	19.5.2 SQLite Database Type Mapping
	19.5.3 PostgreSQL Database Type Mapping
	19.5.4 Oracle Database Type Mapping
	19.5.5 SQL Server Database Type Mapping

	19.6 Uuid Library
	19.6.1 MySQL Database Type Mapping
	19.6.2 SQLite Database Type Mapping
	19.6.3 PostgreSQL Database Type Mapping
	19.6.4 Oracle Database Type Mapping
	19.6.5 SQL Server Database Type Mapping

	20 Qt Profile
	20.1 Basic Types
	20.1.1 MySQL Database Type Mapping
	20.1.2 SQLite Database Type Mapping
	20.1.3 PostgreSQL Database Type Mapping
	20.1.4 Oracle Database Type Mapping
	20.1.5 SQL Server Database Type Mapping

	20.2 Smart Pointers
	20.3 Containers Library
	20.4 Date Time Types
	20.4.1 MySQL Database Type Mapping
	20.4.2 SQLite Database Type Mapping
	20.4.3 PostgreSQL Database Type Mapping
	20.4.4 Oracle Database Type Mapping
	20.4.5 SQL Server Database Type Mapping

