C++ Object Persistence with ODB

Copyright © 2009-2012 Code Synthesis Tools CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
[GNU Free Documentation License, versior] 1.3; with no Invariant Sections, no Front-Cover Texts

and no Back-Cover Texts.

Revision 1.8, January 2012

This revision of the manual describes ODB 1.8.0 and is available in the following formats:

[XHTML] PDH, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.3.txt
http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

Table of Contents

Table of Contents

Prefacg
IAbout This Documeht

[More Informatioh

1
1
[PART | OBJECT RELATIONAL MAPPINEIS e e 3
4

L
(1.1 Archrtecture and Workflolw

[2 HeIIo World Examplle . C e 10
[2.1 Declaring a Persistent Cllass C e 10
[2.2 Generating Database Support Code. 12
2.3 Compilingand Running 14
[2.4 Making Objects Persistent 15
[2.5 Querying the Database for Objects 19
[2.6 Updating Persistent Objgects. 21
[2.7 Defining and Using Views 23
[2.8 Deleting Persistent Objects 24

[3 Worklng with PerS|stent Objebts e 26
[3.1 Concepts and Terminolqgy 26
[3.2 Object and View Pointers 30
3.3 Database 31
[3.4 Transactions 33
[3.5 Connections . C e 37
[3.6 Error Handling and Recovdary C e 39
[3.7 Making Objects Persistent 40
[3.8 Loading Persistent Objects 41
[3.9 Updating Persistent Objgects. 43
[3.10 Deleting Persistent Objgcts. 45
[3.11 Executing Native SQL Statements 47
[3.12 Tracing SQL Statement Execution 48
(3.13 ODB Exceptionnls 51

[4 Querying the Databdse 56
[4.1 ODB Query Languape 57
[4.2 Parameter Binding 59
4.3 Executinga Qudry 59
(4.4 Query Result 61
(5.1 Ordered Contamdzrs e 67
[5.2 Set and Multiset Containers. 69
[5.3 Map and Multimap Contain¢rs 70

Revision 1.8, January 2012 C++ Object Persistence with ODB i

Table of Contents

[5.4 Using Custom Containérs.
[6 Relationships
[6.1 Unidirectional Relationships
[6.1.1 To-One Relationships .
[6.1.2 To-Many Relationships.
[6.2 Bidirectional Relationships .
[6.2.1 One-to-One Relationships .
[6.2.2 One-to-Many Relationshjps.
[6.2.3 Many-to-Many Relationships
[6.3 Lazy Pointefs. .
[6.4 Using Custom Smart Pointers.
[7 Value Types . . .
[7.1 Simple Value Type¢ .
[7.2 Composite Value Types
[7.2.1 Composite Value Column and Table Ngmes.
[7.3 Pointers anNIULL Value Semanti¢s
[8.1 Reuse Inheritance .
[8.2 Polymorphism Inheritanice.
[9.1 Object Views .
[9.2 Table Views . . .
[9.3 Mixed Views . . .
[9.4 View Query Conditionfs
[9.5 Native Views.
[9.6 Other View Features and Limitatipns .
[l0Sessign . . .
[10.1 Object Cache
[11 Optimistic Concurrengy.
[12 ODB Pragma Langudge
[12.1 Object Type Pragnjas
[12.1.2pointer | .
[12.1.3abstract |
(12.1.4readonly |
[12.1.50ptimistic | .
.
[12.1.7callback |
[12.1.8schema]
[12.2 View Type Pragmps.
| |
12.2.2table
2.2.3quer

= =]
N
N
'_\
(o)
=)
o
0
~+

ii C++ Object Persistence with ODB

71
12
15
76
76
78
80
81
82
84
89
0
0
0
93
96
101
103
105
106
108
114
117
118
120
122
124
126
128
134
136
137
137
138
139
139
140
141
143
146
147
147
147

Revision 1.8, January 2012

Table of Contents

[12.2.4pointer | 147
[12.2.5callback | 147
[12.3 Value Type Pragmas 148
[23dtype].49
[12.3.2d type |.150
[12.3.3null /not nuit | 150
[12.3.4default15
[12.3.50ptioNs 152
[12.3.6readonly | 152
[12.3.7unordered | 153
[12.3.8index type |. 153
[12.3.9key type | 153
[12.3.10value type |53
(12.3.11value null /value not null (. 154
[12.3.12id options | e Y|
[12.3.13index options | Y
[12.3.14key options | 155
[12.3.15value options | e 1515
[r2.3.16id colulin 155
[12.3.17index column |. 155
[12.3.18key column |156
[12.3.19value column |. 156
[12.4 Data Member Pragnfas 156
e KoY 4
[242auto].158
[1243type].158
[12.4.4null /not nuit | 159
[12.4.5default160
[12.4.60ptiONSs162
[12.4.7column (object, compositevalde) 163
[12.4.8column (view)1e3
[12.4.%transient |163
[12.4.10readonly | 1l64
[12.4.11inverse | . 15
[12.4.12version |1e6
[12.4.13unordered | 166
(12.4.14table | 167
[12.4.15index type | 1le8
[12.4.16key type | 168
[12.4.17value type |1les8
[12.4.18value null /value not null (. 169
[12.4.19id options | . K51
[12.4.20index options | e ¢

Revision 1.8, January 2012 C++ Object Persistence with ODB iii

Table of Contents

[12.4.21key options |
[12.4.22value options |
[12.4.23id column | .
[12.4.24index column | .
[12.4.25key column |
[12.4.26value column | .
[12.5 Namespace Pragmas
[12.5.1schemal]
[12.6 C++ Compiler Warnlnbs
(12.6.1 GNU C+i-.
[12.6.2 Visual C+}+
(12.6.3 Sun CH+ .
(12.6.4 IBM XL C++
[12.6.5 HP aC++ . .
[PART Il DATABASE SYSTEM$
(13 MySOQL Database .
(13.1 MySQL Type Mappldg
[13.2 MySQL Database Class .
[13.3 MySQL Connection and Connection Fadtory
[13.4 MySQL Exceptions . .
[13.5 MySQL Limitations .
[13.5.1 Foreign Key Constralhis
[14 SOLite Databake .
[14.1 SQLite Type Mapplrhg
[14.2 SQLite Database Class . .
[14.3 SQLite Connection and Connection Fa¢tory
[14.4 SQLite Exceptions)
[14.5 SQLite Limitations . .
[14.5.1 Query Result Cachlng)
[14.5.2 Automatic Assignment of Objectllds
[14.5.3 Foreign Key Constraihts
[14.5.4 Constraint Violatiohs .
[14.5.5 Sharing of Queries
[15 PostgreSQL Database.
[15.1 PostgreSQL Type Mapplng
[15.2 PostgreSQL Database Class.

[15.3 PostgreSQL Connection and Connection chtory.

[15.4 PostgreSQL Exceptians .

[15.5 PostgreSQL Limitatiohs . .
[15.5.1 Query Result Caching.
[15.5.2 Foreign Key Constraihts
[15.5.3 Unique Constraint Violatigns
[15.5.4 Date-Time Format.

iv C++ Object Persistence with ODB

170
171
171
171
172
172
173
173
173
174
174
175
175
175
176
177
177
179
182
186
187
187
188
188
189
192
196
197
197
197
198
199
199
200
200
202
204
207
208
208
209
209
209

Revision 1.8, January 2012

[15.5.5 Timezongs
[15.5.6NUMERICType Support
[16 Oracle Databalse)
[16.1 Oracle Type Mapplhg
[16.2 Oracle Database Clpss .))
[16.3 Oracle Connection and Connection Fattory :
[16.4 Oracle Exceptiohs
[16.5 Oracle Limitations
[16.5.1 Identifier Truncatign .
[16.5.2 Query Result Caching.
[16.5.3 Foreign Key Constraihts
[16.5.4 Unique Constraint Violatidns
(16.5.5 Largg=LOATandNUMBERYype$
[16.5.6 Timezongs
[16.5.7LONGTypes$
[17 Microsoft SQL Server Database
[17.1 SOL Server Type Mapping
[17.2 SQL Server Database Class.
[17.3 SQL Server Connection and Connection Falctory
[17.4 SQL Server Exceptigns .
[17.5 SQL Server Limitations . .
[17.5.1 Query Result Caching.
[17.5.2 Foreign Key Constraihts
[17.5.3 Unique Constraint Violatigns
[17.5.4 Multithreaded Windows Applicatigns
[17.5.5 Affected Row Count and DDL Statemgnts .

[17.5.6 Long Data and Automatically Assigned Objedt Ids .

[PART Ill PROFILES.
[18 Profiles Introductidn
[19 Boost Profilp)
[19.1 Smart Pointers lerairy
[19.2 Unordered Containers Library
[19.3 Optional Librany .
[19.4 Date Time Library . .
(19.4.1 MySQL Database Type Mapdlng)
[19.4.2 SOLite Database Type Mapping
[19.4.3 PostgreSOL Database Type Mapgping .
[19.4.4 Oracle Database Type Mapping
[19.4.5 SOL Server Database Type Mapping .
20 Ot Profile . . e
[20.1 Basic Typés . .
[20.1.1 MySQL Database Type Mapdlng)
[20.1.2 SOLite Database Type Mapping

Revision 1.8, January 2012 C++ Object Persistence with ODB

Table of Contents

209
209
210
210
212
215
218
220
220
221
221
221
221
222
222
223
223
227
232
236
237
237
238
238
238
238
238
239
240
241
241
242
243
243
245
245
246
247
247
249
249
249
250

Table of Contents

[20.1.3 PostgreSOL Database Type Magping. 250

[20.1.4 Oracle Database Type Mapping 251
[20.1.5 SOL Server Database Type Mapping 252
[20.2 Smart Point,s 252
[20.3 Containers Librayy 254
[20.4 Date Time Typés 254
[20.4.1 MySOL Database Type Mapgding 255
[20.4.2 SOLite Database Type Mapging 256
[20.4.3 PostgreSOQL Database Type Magping 256
[20.4.4 Oracle Database Type Mapping 257
[20.4.5 SOL Server Database Type Mapping 257

Vi C++ Object Persistence with ODB Revision 1.8, January 2012

Preface

Preface

As more critical aspects of our lives become dependant on software systems, more and more
applications are required to save the data they work on in persistent and reliable storage. Database
management systems and, in particular, relational database management systems (RDBMS) are
commonly used for such storage. However, while the application development techniques and
programming languages have evolved significantly over the past decades, the relational database
technology in this area stayed relatively unchanged. In particular, this led to the now infamous
mismatch between the object-oriented model used by many modern applications and the rela-
tional model still used by RDBMS.

While relational databases may be inconvenient to use from modern programming languages,
they are still the main choice for many applications due to their maturity, reliability, as well as the
availability of tools and alternative implementations.

To allow application developers to utilize relational databases from their object-oriented applica-
tions, a technique called object-relational mapping (ORM) is often used. It involves a conversion
layer that maps between objects in the application’s memory and their relational representation in
the database. While the object-relational mapping code can be written manually, automated ORM
systems are available for most object-oriented programming languages in use today.

ODB is an ORM system for the C++ programming language. It was designed and implemented
with the following main goals:

® Provide a fully-automatic ORM system. In particular, the application developer should not
have to manually write any mapping code, neither for persistent classes nor for their data
member.

® Provide clean and easy to use object-oriented persistence model and database APIs that
support the development of realistic applications for a wide variety of domains.

® Provide a portable and thread-safe implementation. ODB should be written in standard C++
and capable of persisting any standard C++ classes.

® Provide profiles that integrate ODB with type systems of widely-used frameworks and
libraries such as Qt and Boost.

® Provide a high-performance and low overhead implementation. ODB should make efficient
use of database and application resources.

About This Document

The goal of this manual is to provide you with an understanding of the object persistence model
and APIs which are implemented by ODB. As such, this document is intended for C++ applica-
tion developers and software architects who are looking for a C++ object persistence solution.
Prior experience with C++ is required to understand this document. A basic understanding of

Revision 1.8, January 2012 C++ Object Persistence with ODB 1

More Information

relational database systems is advantageous but not expected or required.

More Information

Beyond this manual, you may also find the following sources of information useful:

[ODB Compiler Command Line Manual.

® TheINSTALL files in the ODB source packages provide build instructions for various plat-
forms.

® Theodb-examples package contains a collection of examples and a README file with

an overview of each example.

e The[odb-usels mailing list is the place to ask technical questions about ODB. Furthermore,
the searchable archiyes may already have answers to some of your questions.

2 C++ Object Persistence with ODB Revision 1.8, January 2012

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

PART | OBJECT-RELATIONAL MAPPING

PART | OBJECT-RELATIONAL MAPPING

Part | describes the essential database concepts, APIs, and tools that together comprise the
object-relational mapping for C++ as implemented by ODB. It consists of the following chapters.

Introductio
[Hello World Example

[Working with Persistent Obje¢ts

[Querying the Database

Relationships
alue Type

1

2

3

4

3) ontainers
6

7

8 [Inheritance
9

SIS (@)
@
=

10

[

€ssio

11 [Optimistic Concurrengy

12 |ODB Pragma Languabe

Revision 1.8, January 2012 C++ Object Persistence with ODB 3

1 Introduction

1 Introduction

ODB is an object-relational mapping (ORM) system for C++. It provides tools, APIs, and library
support that allow you to persist C++ objects to a relational database (RDBMS) without having to
deal with tables, columns, or SQL and without manually writing any of the mapping code.

ODB is highly flexible and customizable. It can either completely hide the relational nature of the
underlying database or expose some of the details as required. For example, you can automati-
cally map basic C++ types to suitable SQL types, generate the relational database schema for
your persistent classes, and use simple, safe, and yet powerful object query language instead of
SQL. Or you can assign SQL types to individual data members, use the existing database schema,
and run native SQISELECTqueries. In fact, at an extreme, ODB can be usgdsas conve-

nient way to handle results of native SQL queries.

ODB is not a framework. It does not dictate how you should write your application. Rather, it is
designed to fit into your style and architecture by only handling object persistence and not inter-
fering with any other functionality. There is no common base type that all persistent classes
should derive from nor are there any restrictions on the data member types in persistent classes.
Existing classes can be made persistent with a few or no modifications.

ODB has been designed for high performance and low memory overhead. Prepared statements
are used to send and receive object state in binary format instead of text which reduces the load
on the application and the database server. Extensive caching of connections, prepared state-
ments, and buffers saves time and resources on connection establishment, statement parsing and
memory allocations. For each supported database system the native C API is used instead of
ODBC or higher-level wrapper APIs to reduce overhead and provide the most efficient imple-
mentation for each database operation. Finally, persistent classes have zero memory overhead.
There are no hidden "database"” members that each class must have nor are there per-object data
structures allocated by ODB.

In this chapter we present a high-level overview of ODB. We will start with the ODB architecture

and then outline the workflow of building an application that uses ODB. We will conclude the
chapter by contrasting the drawbacks of the traditional way of saving C++ objects to relational
databases with the benefits of using ODB for object persistence. The next chapter takes a more
hands-on approach and shows the concrete steps necessary to implement object persistence in a
simple "Hello World" application.

1.1 Architecture and Workflow

From the application developer’'s perspective, ODB consists of three main components: the ODB
compiler, the common runtime library, callddbodb , and the database-specific runtime
libraries, calledibodb-<database> , Where <database> is the name of the database system
this runtime is for, for examplébodb-mysqgl . For instance, if the application is going to use

4 C++ Object Persistence with ODB Revision 1.8, January 2012

1.1 Architecture and Workflow

the MySQL database for object persistence, then the three ODB components that this application
will use are the ODB compilelibodb andlibodb-mysq|

The ODB compiler generates the database support code for persistent classes in your application.
The input to the ODB compiler is one or more C++ header files defining C++ classes that you
want to make persistent. For each input header file the ODB compiler generates a set of C++
source files implementing conversion between persistent C++ classes defined in this header and
their database representation. The ODB compiler can also generate a database schema file that
creates tables necessary to store the persistent classes.

The ODB compiler is a real C++ compiler except that it produces C++ instead of assembly or
machine code. In particular, it is not an ad-hoc header pre-processor that is only capable of recog-
nizing a subset of C++. ODB is capable of parsing any standard C++ code.

The common runtime library defines database system-independent interfaces that your applica-
tion can use to manipulate persistent objects. The database-specific runtime library provides
implementations of these interfaces for a concrete database as well as other database-specific util-
ities that are used by the generated code. Normally, the application does not use the
database-specific runtime library directly but rather works with it via the common interfaces from
libodb . The following diagram shows the object persistence architecture of an application that
uses MySQL as the underlying database system:

Application

Persistent Classes Application Code
ODE
Generated Code 0DB Common Runtime

ODB MyS0L Runtime

MySQL Database

The ODB system also defines two special-purpose languages: the ODB Pragma Language and
ODB Query Language. The ODB Pragma Language is used to communicate various properties of

persistent classes to the ODB compiler by means of spguagma directives embedded in the

C++ header files. It controls aspects of the object-relational mapping such as names of tables and
columns that are used for persistent classes and their members or mapping between C++ types

Revision 1.8, January 2012 C++ Object Persistence with ODB 5

1.1 Architecture and Workflow

and database types.

The ODB Query Language is an object-oriented database query language that can be used to
search for objects matching certain criteria. It is modeled after and is integrated into C++ allow-
ing you to write expressive and safe queries that look and feel like ordinary C++.

The use of the ODB compiler to generate database support code adds an additional step to your
application build sequence. The following diagram outlines the typical build workflow of an
application that uses ODB:

6 C++ Object Persistence with ODB Revision 1.8, January 2012

1.1 Architecture and Workflow

Application Code

#include

Generated Code

C++ Header #include

ODE Runtime Libraries

Libodb-mysgl

Database Application Executable
Schema

Revision 1.8, January 2012 C++ Object Persistence with ODB 7

1.2 Benefits

1.2 Benefits

The traditional way of saving C++ objects to relational databases requires that you manually
write code which converts between the database and C++ representations of each persistent class.
The actions that such code usually performs include conversion between C++ values and strings
or database types, preparation and execution of SQL queries, as well as handling the result sets.
Writing this code manually has the following drawbacks:

e Difficult and time consuming. Writing database conversion code for any non-trivial appli-
cation requires extensive knowledge of the specific database system and its APIs. It can also
take a considerable amount of time to write and maintain. Supporting multi-threaded appli-
cations can complicate this task even further.

® Suboptimal performance.Optimal conversion often requires writing large amounts of extra
code, such as parameter binding for prepared statements and caching of connections, state-
ments, and buffers. Writing code like this in an ad-hoc manner is often too difficult and time
consuming.

® Database vendor lock-in.The conversion code is written for a specific database which
makes it hard to switch to another database vendor.

® Lack of type safety.lIt is easy to misspell column names or pass incompatible values in
SQL queries. Such errors will only be detected at runtime.

e Complicates the application. The database conversion code often ends up interspersed
throughout the application making it hard to debug, change, and maintain.

In contrast, using ODB for C++ object persistence has the following benefits:

® Ease of useODB automatically generates database conversion code from your C++ class
declarations and allows you to manipulate persistent objects using simple and thread-safe
object-oriented database APIs.

® Concise codeWith ODB hiding the details of the underlying database, the application logic
is written using the natural object vocabulary instead of tables, columns and SQL. The
resulting code is simpler and thus easier to read and understand.

® Optimal performance. ODB has been designed for high performance and low memory
overhead. All the available optimization techniques, such as prepared statements and exten-
sive connection, statement, and buffer caching, are used to provide the most efficient imple-
mentation for each database operation.

® Database portability. Because the database conversion code is automatically generated, it is
easy to switch from one database vendor to another. In fact, it is possible to test your appli-
cation on several database systems before making a choice.

e Safety. The ODB object persistence and query APIs are statically typed. You use C++ iden-
tifiers instead of strings to refer to object members and the generated code makes sure
database and C++ types are compatible. All this helps catch programming errors at
compile-time rather than at runtime.

8 C++ Object Persistence with ODB Revision 1.8, January 2012

1.2 Benefits

® Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in persistent classes. The database support code is kept separately from the
class declarations and application logic. This makes the application easier to debug and
maintain.

Overall, ODB provides an easy to use yet flexible and powerful object-relational mapping (ORM)
system for C++. Unlike other ORM implementations for C++ that still require you to write
database conversion or member registration code for each persistent class, ODB keeps persistent
classes purely declarative. The functional part, the database conversion code, is automatically
generated by the ODB compiler from these declarations.

Revision 1.8, January 2012 C++ Object Persistence with ODB 9

2 Hello World Example

2 Hello World Example

In this chapter we will show how to create a simple C++ application that relies on ODB for object
persistence using the traditional "Hello World" example. In particular, we will discuss how to
declare persistent classes, generate database support code, as well as compile and run our applica-
tion. We will also learn how to make objects persistent, load, update and delete persistent objects,
as well as query the database for persistent objects that match certain criteria. The example also
shows how to define and use views, a mechanism that allows us to create projections of persistent
objects, database tables, or to handle results of native SQL queries.

The code presented in this chapter is based ohdli@ example which can be found in the
odb-examples package of the ODB distribution.

2.1 Declaring a Persistent Class

In our "Hello World" example we will depart slightly from the norm and say hello to people
instead of the world. People in our application will be represented as objects of C++ class
person which is saved iperson.hxx

Il person.hxx
1

#include <string>

class person

{
public:
person (const std::string& first,
const std::string& last,
unsigned short age);

const std::string&
first () const;

const std::string&
last () const;

unsigned short
age () const;

void
age (unsigned short);

private:

10 C++ Object Persistence with ODB Revision 1.8, January 2012

2.1 Declaring a Persistent Class

std::string first_;
std::string last_;
unsigned short age_;

%

In order not to miss anyone whom we need to greet, we would like to sgyerslo@ objects in
a database. To achieve this we declarg#ison class as persistent:

/I person.hxx
I

#include <string>

#include <odb/core.hxx> // (1)

#pragma db object 11 (2)
class person
{
private:
person () {} 11 (3)

friend class odb::access; // (4)

#pragma db id auto I (5)
unsigned long id_; I (5)

std::string first_;
std::string last_;
unsigned short age_;

k

To be able to save tiperson objects in the database we had to make five changes, marked with
() to (5), to the original class definition. The first change is the inclusion of the ODB header
<odb/core.hxx> . This header provides a number of core ODB declarations, such as
odb::access , that are used to define persistent classes.

The second change is the additiondbfobject pragma just before the class definition. This
pragma tells the ODB compiler that the class that follows is persistent. Note that making a class
persistent does not mean that all objects of this class will automatically be stored in the database.
You would still create ordinary dransient instances of this class just as you would before. The
difference is that now you can make such transient instances persistent, as we will see shortly.

The third change is the addition of the default constructor. The ODB-generated database support
code will use this constructor when instantiating an object from the persistent state. Just as we
have done for thperson class, you can make the default constructor private or protected if you
don’t want to make it available to the users of your class.

Revision 1.8, January 2012 C++ Object Persistence with ODB 11

2.2 Generating Database Support Code

With the fourth change we make tbdb::access class a friend of oyserson class. This is
necessary to make the default constructor and the data members accessible to the ODB support
code. If your class has public default constructor and public data members, tHeganihe
declaration is unnecessary.

The final change adds a data member catled which is preceded by another pragma. In ODB
every persistent object must have a unique, within its class, identifier. Or, in other words, no two
persistent instances of the same type have equal identifiers. For our class we use an integer id.
The db id auto pragma that precedes tiet. member tells the ODB compiler that the
following member is the object's identifier. Thauto specifier indicates that it is a
database-assigned id. A unique id will be automatically generated by the database and assigned to
the object when it is made persistent.

In this example we chose to add an identifier because none of the existing members could serve
the same purpose. However, if a class already has a member with suitable properties, then it is
natural to use that member as an identifier. For example, ipegon class contained some

form of personal identification (SSN in the United States or ID/passport number in other coun-
tries), then we could use that as an id. Or, if we stored an email associated with each person, then
we could have used that since each person is presumed to have a unique email address, for
example:

class person

{

#pragma db id
std::string email_;

std::string first_;
std::string last_;
unsigned short age_;

k

Now that we have the header file with the persistent class, let's see how we can generate that
database support code.

2.2 Generating Database Support Code

The persistent class definition that we created in the previous section was particularly light on any
code that could actually do the job and store the person’s data to a database. There was no serial-
ization or deserialization code, not even data member registration, that you would normally have
to write by hand in other ORM libraries for C++. This is because in ODB code that translates
between the database and C++ representations of an object is automatically generated by the
ODB compiler.

12 C++ Object Persistence with ODB Revision 1.8, January 2012

2.2 Generating Database Support Code

To compile thgperson.hxx header we created in the previous section and generate the support
code for the MySQL database, we invoke the ODB compiler from a terminal (UNIX) or a
command prompt (Windows):

odb -d mysql --generate-query person.hxx

We will use MySQL as the database of choice in the remainder of this chapter, though other
supported database systems can be used instead.

If you haven't installed the common ODB runtime libralipddb) or installed it into a direc-
tory where C++ compilers don't search for headers by default, then you may get the following
error:

person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory

To resolve this you will need to specify thigodb headers location with thé preprocessor
option, for example:

odb -l.../libodb -d mysqgl --generate-query person.hxx
Here.../libodb represents the path to thigodb directory.

The above invocation of the ODB compiler produces three C++ filesson-odb.hxx
person-odb.ixx , person-odb.cxx . You normally don’t use types or functions contained
in these files directly. Rather, all you have to do is inclpdeson-odb.hxx in C++ files
where you are performing database operations with classespeoson.hxx as well as
compileperson-odb.cxx and link the resulting object file to your application.

You may be wondering what thegenerate-query option is for. It instructs the ODB
compiler to generate optional query support code that we will use later in our "Hello World"
example. Another option that we will find usefuligenerate-schema . This option makes

the ODB compiler generate a fourth filgerson.sql , which is the database schema for the
persistent classes definedparson.hxx

odb -d mysql --generate-query --generate-schema person.hxx

The database schema file contains SQL statements that creates tables necessary to store the
persistent classes. We will learn how to use it in the next section.

If you would like to see a list of all the available ODB compiler options, refer tg thel ODB
[Compiler Command Line Manual.

Now that we have the persistent class and the database support code, the only part that is left is
the application code that does something useful with all of this. But before we move on to the fun
part, let’s first learn how to build and run an application that uses ODB. This way when we have

Revision 1.8, January 2012 C++ Object Persistence with ODB 13

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

2.3 Compiling and Running

some application code to try, there are no more delays before we can run it.

2.3 Compiling and Running

Assuming that thenain() function with the application code is savedinver.cxx and the

database support code and schema are generated as described in the previous section, to build our
application we will first need to compile all the C++ source files and then link them with two
ODB runtime libraries.

On UNIX, the compilation part can be done with the following commands (substittitevith
your C++ compiler name; for Microsoft Visual Studio setup, seediheexamples package):

c++ -c driver.cxx
c++ -c person-odb.cxx

Similar to the ODB compilation, if you get an error stating that a heaaeibih or odb/mysq|
directory is not found, you will need to use the preprocessor option to specify the location of
the common ODB runtime library lijodb) and MySQL ODB runtime library
(libodb-mysqgl).

Once the compilation is done, we can link the application with the following command:

c++ -0 driver driver.o person-odb.o -lodb-mysql -lodb

Notice that we link our application with two ODB librariéisodb which is a common runtime
library andlibodb-mysql which is a MySQL runtime library (if you use another database,
then the name of this library will change accordingly). If you get an error saying that one of these
libraries could not be found, then you will need to use-lthdinker option to specify their loca-
tions.

Before we can run our application we need to create a database schema using the generated
person.sql file. For MySQL we can use thysqgl client program, for example:

mysq| --user=odb_test --database=o0db_test < person.sq|l

The above command will log in to a local MySQL server asadlertest without a password
and use the database nanoeh_test . Beware that after executing this command, all the data
stored in theodb_test database will be deleted.

Note also that using a standalone generated SQL file is not the only way to create a database
schema in ODB. We can also embed the schema directly into our application or use custom
schemas that were not generated by the ODB compiler. Refer to Section 3.3, "Database" for
details.

14 C++ Object Persistence with ODB Revision 1.8, January 2012

2.4 Making Objects Persistent

Once the database schema is ready, we run our application using the same login and database
name:

Jdriver --user odb_test --database odb_test

2.4 Making Objects Persistent

Now that we have the infrastructure work out of the way, it is time to see our first code fragment
that interacts with the database. In this section we will learn how to peagen objects persis-
tent:

/I driver.cxx
I

#include <memory> // std::auto_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{

try

{

auto_ptr<database> db (new odb::mysql::database (argc, argv));
unsigned long john_id, jane_id, joe_id;

/I Create a few persistent person objects.
1

{
person john ("John", "Doe", 33);
person jane ("Jane", "Doe", 32);
person joe ("Joe", "Dirt", 30);

transaction t (db->begin ());
/I Make objects persistent and save their ids for later use.

I
john_id = db->persist (john);

Revision 1.8, January 2012 C++ Object Persistence with ODB 15

2.4 Making Objects Persistent

jane_id = db->persist (jane);
joe_id = db->persist (joe);

t.commit ();

}
}

catch (const odb::exception& e)

{

cerr << e.what () << endl;
return 1,

}
}

Let’'s examine this code piece by piece. At the beginning we include a bunch of headers. After the
standard C++ headers we includedb/database.hxx> and<odb/transaction.hxx>

which define database system-independelibt.database = andodb::transaction inter-

faces. Then we includeodb/mysql/database.hxx> which defines the MySQL imple-
mentation of the database interface. Finally, we include person.hxx and
person-odb.hxx which define our persisteperson class.

Then we have twaoising namespace directives. The first one brings in the names from the
standard namespace and the second brings in the ODB declarations which we will use later in the
file. Notice that in the second directive we usedlblb::core namespace instead of justb.

The former only brings into the current namespace the essential ODB names, such as the
database andtransaction classes, without any of the auxiliary objects. This minimizes the
likelihood of name conflicts with other libraries. Note also that you should continue using the
odb namespace when qualifying individual names. For example, you should write
odb::database , notodb::core::database

Once we are imain() , the first thing we do is create the MySQL database object. Notice that
this is the last line imriver.cxx that mentions MySQL explicitly; the rest of the code works
through the common interfaces and is database system-independent. We aigg ttaegv
mysql::database constructor which automatically extract the database parameters, such as
login name, password, database name, etc., from the command line. In your own applications you
may prefer to use othenysql::database constructors which allow you to pass this informa-

tion directly (Section 13.2, "MySOL Database Class").

Next, we create threggerson objects. Right now they are transient objects, which means that if
we terminate the application at this point, they will be gone without any evidence of them ever
existing. The next line starts a database transaction. We discuss transactions in detail later in this
manual. For now, all we need to know is that all ODB database operations must be performed
within a transaction and that a transaction is an atomic unit of work; all database operations
performed within a transaction either succeed (committed) together or are automatically undone
(rolled back).

16 C++ Object Persistence with ODB Revision 1.8, January 2012

2.4 Making Objects Persistent

Once we are in a transaction, we call pleesist() database function on each of @arson

objects. At this point the state of each object is saved in the database. However, note that this
state is not permanent until and unless the transaction is committed. If, for example, our applica-
tion crashes at this point, there will still be no evidence of our objects ever existing.

In our case, one more thing happens when wepeadist() . Remember that we decided to

use database-assigned identifiers formenson objects. The call tpersist() is where this
assignment happens. Once this function returnsidthe member contains this object’s unique
identifier. As a convenience, tipersist() function also returns a copy of the object’s identi-

fier that it made persistent. We save the returned identifier for each object in a local variable. We
will use these identifiers later in the chapter to perform other database operations on our persis-
tent objects.

After we have persisted our objects, it is time to commit the transaction and make the changes
permanent. Only after theommit() function returns successfully, are we guaranteed that the
objects are made persistent. Continuing with the crash example, if our application terminates after
the commit for whatever reason, the objects’ state in the database will remain intact. In fact, as
we will discover shortly, our application can be restarted and load the original objects from the
database. Note also that a transaction must be committed explicitly witbrtimit() call. If

the transaction object leaves scope without the transaction being explicitly committed or
rolled back, it will automatically be rolled back. This behavior allows you not to worry about
exceptions being thrown within a transaction; if they cross the transaction boundary, the transac-
tion will automatically be rolled back and all the changes made to the database undone.

The final bit of code in our example is tbatch block that handles the database exceptions. We
do this by catching the base ODB except|on (Section 3.13, "ODB _Exceptions") and printing the
diagnostics.

Let's now compile[(Section 2.3, "Compiling and Runnjng") and then run our first ODB applica-
tion:

mysq| --user=odb_test --database=odb_test < person.sq|l
Jdriver --user odb_test --database odb_test

Our first application doesn’t print anything except for error messages so we can't really tell
whether it actually stored the objects’ state in the database. While we will make our application
more entertaining shortly, for now we can userttysqgl client to examine the database content.

It will also give us a feel for how the objects are stored:

mysql --user=odb_test --database=odb_test
Welcome to the MySQL monitor.

mysql> select * from person;

Revision 1.8, January 2012 C++ Object Persistence with ODB 17

2.4 Making Objects Persistent

B S R — +ommen +
| id | first | last | age |
B S R — +ommen +

1]John	Doe	33
2]Jane	Doe	32
3]Joe	Dirt] 30	

B S R — +ommen +
3 rows in set (0.00 sec)

mysql> quit

Another way to get more insight into what's going on under the hood, is to trace the SQL state-
ments executed by ODB as a result of each database operation. Here is how we can enable tracing
just for the duration of our transaction:

/I Create a few persistent person objects.
i

{

transaction t (db->begin ());
t.tracer (stderr_tracer);

/I Make objects persistent and save their ids for later use.
I

john_id = db->persist (john);

jane_id = db->persist (jane);

joe_id = db->persist (joe);

t.commit ();

}

With this modification our application now produces the following output:

INSERT INTO ‘person’ (‘'id", first','last’,'age’) VALUES (?,?,?,?

INSERT INTO ‘person’ (‘'id", first','last’,'age’) VALUES (?,?,?,?

INSERT INTO ‘person’ (‘id‘,first’,‘last’,'age’) VALUES (?,?,?,?

Note that we see question marks instead of the actual values because ODB uses prepared state-
ments and sends the data to the database in binary form. For more information on tracing, refer to
[Section 3.12, "Tracing SQL Statement Execution". In the next section we will see how to access
persistent objects from our application.

18 C++ Object Persistence with ODB Revision 1.8, January 2012

2.5 Querying the Database for Objects

2.5 Querying the Database for Objects

So far our application doesn’'t resemble a typical "Hello World" example. It doesn’t print
anything except for error messages. Let’'s change that and teach our application to say hello to
people from our database. To make it a bit more interesting, let's say hello only to people over
30:

/I driver.cxx
I

int
main (int argc, char* argv[])
{

try

{

/I Create a few persistent person objects.
i

{
=

typedef odb::query<person> query;
typedef odb::result<person> result;

/I Say hello to those over 30.
i

{
transaction t (db->begin ());

result r (db->query<person> (query::age > 30));

for (result::iterator i (r.begin ()); i I=r.end (); ++i)
{
cout << "Hello, " << i->first () << "I" << end];
}
t.commit ();
}
}
catch (const odb::exception& e)
{
cerr << e.what () << endl;
return 1,
}
}

Revision 1.8, January 2012 C++ Object Persistence with ODB 19

2.5 Querying the Database for Objects

The first half of our application is the same as before and is replaced with "..." in the above listing
for brevity. Again, let's examine the rest of it piece by piece.

The twotypedef s create convenient aliases for two template instantiations that will be used a
lot in our application. The first is the query type for ffegson objects and the second is the
result type for that query.

Then we begin a new transaction and call goery() database function. We pass a query
expressiondquery::age > 30) which limits the returned objects only to those with the age
greater than 30. We also save the result of the query in a local variable.

The next few lines perform a standard for-loop iteration over the result sequence printing hello
for every returned person. Then we commit the transaction and that’s it. Let's see what this appli-
cation will print:

mysq| --user=odb_test --database=odb_test < person.sq|l
Jdriver --user odb_test --database odb_test

Hello, John!
Hello, Jane!

That looks about right, but how do we know that the query actually used the database instead of
just using some in-memory artifacts of the earpiersist() calls? One way to test this would

be to comment out the first transaction in our application and re-run it without re-creating the
database schema. This way the objects that were persisted during the previous run will be
returned. Alternatively, we can just re-run the same application without re-creating the schema
and notice that we now show duplicate objects:

Jdriver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!

What happens here is that the previous run of our application persisted gpaetoof objects

and when we re-run the application, we persist another set with the same names but with different
ids. When we later run the query, matches from both sets are returned. We can change the line
where we print the "Hello" string as follows to illustrate this point:

cout << "Hello, " << i->first () << " (" <<i->id () << ")I" << endl;

If we now re-run this modified program, again without re-creating the database schema, we will
get the following output:

20 C++ Object Persistence with ODB Revision 1.8, January 2012

2.6 Updating Persistent Objects

Jdriver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!

The identifiers 3, 6, and 9 that are missing from the above list belong to the "Joe Dirt" objects
which are not selected by this query.

2.6 Updating Persistent Objects

While making objects persistent and then selecting some of them using queries are two useful
operations, most applications will also need to change the object’s state and then make these
changes persistent. Let’s illustrate this by updating Joe’s age who just had a birthday:

/I driver.cxx
1

int
main (int argc, char* argv[])
{

try

{

unsigned long john_id, jane_id, joe_id;

/I Create a few persistent person objects.
I

{

/I Save object ids for later use.
/)
john_id = john.id ();
jane_id = jane.id ();
joe_id = joe.id ();
}

/I Joe Dirt just had a birthday, so update his age.
I

{
transaction t (db->begin ());

Revision 1.8, January 2012 C++ Object Persistence with ODB 21

2.6 Updating Persistent Objects

auto_ptr<person> joe (db->load<person> (joe_id));
joe->age (joe->age () + 1);
db->update (*joe);

t.commit ();

}

/I Say hello to those over 30.
i

{

=
}

catch (const odb::exception& e)

{

cerr << e.what () << endl;
return 1,

}
}

The beginning and the end of the new transaction are the same as the previous two. Once within a
transaction, we call thlwad() database function to instantiatgp@rson object with Joe’s
persistent state. We pass Joe’s object identifier that we stored earlier when we made this object
persistent. While here we us#d::auto_ptr to manage the returned object, we could have

also used another smart pointer, for exansplared_ptr from TR1 or Boost. For more infor-

mation on the object lifetime management and the smart pointers that we can use for that, see
[Section 3.2, "Object and View Pointdrs".

With the instantiated object in hand we increment the age and calptate() function to
update the object’s state in the database. Once the transaction is committed, the changes are made
permanent.

If we now run this application, we will see Joe in the output since he is now over 30:

mysq| --user=o0db_test --database=odb_test < person.sq|l
Jdriver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!

What if we didn’t have an identifier for Joe? Maybe this object was made persistent in another
run of our application or by another application altogether. Provided that we only have one Joe
Dirt in the database, we can use the query facility to come up with an alternative implementation
of the above transaction:

22 C++ Object Persistence with ODB Revision 1.8, January 2012

2.7 Defining and Using Views

/I Joe Dirt just had a birthday, so update his age. An
/ alternative implementation without using the object id.
1

{
transaction t (db->begin ());

result r (db->query<person> (query::first == "Joe" &&
query::last == "Dirt"));

result::iterator i (r.begin ());

if (il=r.end ())
{

auto_ptr<person> joe (i.load ());
joe->age (joe->age () + 1);
db->update (*joe);

}

t.commit ();

}

2.7 Defining and Using Views

Suppose that we need to gather some basic statistics about the people stored in our database.
Things like the total head count, as well as the minimum and maximum ages. One way to do it
would be to query the database for all peeson objects and then calculate this information as

we iterate over the query result. While this approach may work fine for our database with just
three people in it, it would be very inefficient if we had a large number of objects.

While it may not be conceptually pure from the object-oriented programming point of view, a
relational database can perform some computations much faster and much more economically
than if we performed the same operations ourselves in the application’s process.

To support such cases ODB provides the notion of views. An ODB view is al@ss that
embodies a light-weight, read-only projection of one or more persistent objects or database tables
or the result of a native SQL query execution.

Some of the common applications of views include loading a subset of data members from
objects or columns database tables, executing and handling results of arbitrary SQL queries,
including aggregate queries, as well as joining multiple objects and/or database tables using
object relationships or custom join conditions.

While you can find a much more detailed description of views in Chapter 9, "Yiews", here is how
we can define thgerson_stat view that returns the basic statistics about pleeson
objects:

Revision 1.8, January 2012 C++ Object Persistence with ODB 23

2.8 Deleting Persistent Objects

#pragma db view object(person)
struct person_stat

{
#pragma db column("count(" + person::id_ +")")
std::size_t count;

#pragma db column("min(" + person::age_ +")")
unsigned short min_age;

#pragma db column("max(" + person::age_ +")")
unsigned short max_age;

%

To get the result of a view we use the samery() function as when querying the database for
an object. Here is how we can load and print our statistics using the view we have just created:

/I Print some statistics about all the people in our database.
i

{
transaction t (db->begin ());

odb::result<person_stat> r (db->query<person_stat> ());

/I The result of this query always has exactly one element.
I
const person_stat& ps (*r.begin ());

cout << "count : " << ps.count << end|
<< "min age: " << ps.min_age << end|
<< "max age: " << ps.max_age << endl;

t.commit ();

}

If we now add theperson_stat view to theperson.hxx header, the above transaction to
driver.cxx , as well as re-compile and re-run our example, then we will see the following
additional lines in the output:

count : 3
min age: 31
max age: 33

2.8 Deleting Persistent Objects

The last operation that we will discuss in this chapter is deleting the persistent object from the
database. The following code fragment shows how we can delete an object given its identifier:

24 C++ Object Persistence with ODB Revision 1.8, January 2012

2.9 Summary

/I John Doe is no longer in our database.
i

{
transaction t (db->begin ());

db->erase<person> (john_id);
t.commit ();

}

To delete John from the database we start a transaction, catbtef) database function with
John’s object id, and commit the transaction. After the transaction is committed, the erased object
is no longer persistent.

If we don’t have an object id handy, we can use queries to find and delete the object:

/I John Doe is no longer in our database. An alternative
/I implementation without using the object id.
i

{
transaction t (db->begin ());

result r (db->query<person> (query::first == "John" &&
query::last == "Doe"));

result::iterator i (r.begin ());
if (i'=r.end ()
{

auto_ptr<person> john (i.load ());
db->erase (*john);

}

t.commit ();

}

2.9 Summary

This chapter presented a very simple application which, nevertheless, exercised all of the core
database functiongersist() , query() , load() , update() , anderase() . We also
saw that writing an application that uses ODB involves the following steps:

1. Declare persistent classes in header files.
2. Compile these headers to generate database support code.
3. Link the application with the generated code and two ODB runtime libraries.

Do not be concerned if, at this point, much appears unclear. The intent of this chapter is to give
you only a general idea of how to persist C++ objects with ODB. We will cover all the details
throughout the remainder of this manual.

Revision 1.8, January 2012 C++ Object Persistence with ODB 25

3 Working with Persistent Objects

3 Working with Persistent Objects

The previous chapters gave us a high-level overview of ODB and showed how to use it to store

C++ objects in a database. In this chapter we will examine the ODB object persistence model as
well as the core database APIs in greater detail. We will start with basic concepts and terminol-

ogy in[Section 3]1 and Section [3.2 and continue with the discussion ofilbhelatabase

class iff Section 3.3, transaction$ in Sectioh 3.4, and connectfons in Sedtion 3.5. The remainder of
this chapter deals with the core database operations and concludes with the discussion of ODB
exceptions.

In this chapter we will continue to use and expandpdeson persistent class that we have
developed in the previous chapter.

3.1 Concepts and Terminology

The termdatabase can refer to three distinct things: a general notion of a place where an applica-
tion stores its data, a software implementation for managing this data (for example MySQL), and,
finally, some database software implementations may manage several data stores which are
usually distinguished by name. This name is also commonly referred to as a database.

In this manual, when we use the walalabase, we refer to the first meaning above, for example,
"The update() function saves the object’s state to the database.”" The term Database Manage-
ment System (DBMS) is often used to refer to the second meaning of the word database. In this
manual we will use the terdfatabase system for short, for example, "Database system-indepen-
dent application code." Finally, to distinguish the third meaning from the other two, we will use
the termdatabase name, for example, "The second option specifies the database name that the
application should use to store its data."”

In C++ there is only one notion of a type and an instance of a type. For example, a fundamental
type, such amt , is, for the most part, treated the same as a user defined class type. However,
when it comes to persistence, we have to place certain restrictions and requirements on certain
C++ types that can be stored in the database. As a result, we divide persistent C++ types into two
groups:object types andvalue types. An instance of an object type is called @ject and an
instance of a value type —value.

An object is an independent entity. It can be stored, updated, and deleted in the database indepen-
dent of other objects. Normally, an object has an identifier, callgdt id, that is unigue among

all instances of an object type within a database. In contrast, a value can only be stored in the
database as part of an object and doesn’t have its own unique identifier.

An object consists of data members which are either values (Chapter 7, "Valug Types"), pointers
to other objectq (Chapter 6, "Relationshjips"), or containers of values or pointers to other objects
(Chapter 5, "Containers"). Pointers to other objects and containers can be viewed as special kinds

26 C++ Object Persistence with ODB Revision 1.8, January 2012

3.1 Concepts and Terminology

of values since they also can only be stored in the database as part of an object.

An object type is a C++ class. Because of this one-to-one relationship, we will uselgehs

type andobject class interchangeably. In contrast, a value type can be a fundamental C++ type,
such asnt or a class type, such si&l::string . If a value consists of other values, then it is
called acomposite value and its type — @omposite value type (Section 7.2, "Composite Vallie
[Types}). Otherwise, the value is callsidhple value and its type — a@imple value type

[7.1, "Simple Value Typeg"). Note that the distinction between simple and composite values is
conceptual rather than representational. For exanspdestring is a simple value type
because conceptually string is a single value even though the representation of the string class
may contain several data members each of which could be considered a value. In fact, the same
value type can be viewed (and mapped) as both simple and composite by different applications.

While not strictly necessary in a purely object-oriented application, practical considerations often
require us to only load a subset of an object’'s data members or a combination of members from
several objects. We may also need to factor out some computations to the relational database
instead of performing them in the application’s process. To support such requirements ODB
distinguishes a third kind of C++ types, calldws (Chapter 9, "Views"). An ODB view is a
C++class that embodies a light-weight, read-only projection of one or more persistent objects
or database tables or the result of a native SQL query execution.

Understanding how all these concepts map to the relational model will hopefully make these
distinctions clearer. In a relational database an object type is mapped to a table and a value type is
mapped to one or more columns. A simple value type is mapped to a single column while a
composite value type is mapped to several columns. An object is stored as a row in this table and
a value is stored as one or more cells in this row. A simple value is stored in a single cell while a
composite value occupies several cells. A view is not a persistent entity and it is not stored in the
database. Rather, it is a data structure that is used to capture a single row of an SQL query result.

Going back to the distinction between simple and composite values, consider a date type which
has three integer members: year, month, and day. In one application it can be considered a
composite value and each member will get its own column in a relational database. In another
application it can be considered a simple value and stored in a single column as a number of days
from some predefined date.

Until now, we have been using the tepersistent class to refer to object classes. We will
continue to do so even though a value type can also be a class. The reason for this asymmetry is
the subordinate nature of value types when it comes to database operations. Remember that
values are never stored directly but rather as part of an object that contains them. As a result,
when we say that we want to make a C++ class persistent or persist an instance of a class in the
database, we invariably refer to an object class rather than a value class.

Revision 1.8, January 2012 C++ Object Persistence with ODB 27

3.1 Concepts and Terminology

To make a C++ class a persistent object class we declare it as such usiiigobject
pragma, for example:

#pragma db object
class person

{
=

The other pragma that we often useallisid which designates one of the data members as an
object id, for example:

#pragma db object
class person

{

#pragma db id
unsigned long id_;

%

While it is possible to declare a persistent class without an object id, such a class will have
limited functionality (Section 12.1.6id" ").

The above two pragmas are the minimum required to declare a persistent class with an object id.
Other pragmas can be used to fine-tune the database-related properties of a class and its members
(Chapter 12, "ODB Pragma Langudge").

Normally, an object class should define the default constructor. The generated database support
code uses this constructor when instantiating an object from the persistent state. If we add the
default constructor only for the database support code, then we can make it private. It is also
possible to have an object type without the default constructor. However, in this case, the

database operations can only load the persistent state into an existing irjstance (Sdction 3.8,
['Loading Persistent Objeci$", Section 4.4, "Query Rgsult").

The object id type should be default-constructible.

If an object class has private or protected non-transient data members or if its default constructor
is not public, then thedb::access class, defined in theodb/core.hxx> header, should
be declared a friend of this object type. For example:

#include <odb/core.hxx>

#pragma db object
class person

{

28 C++ Object Persistence with ODB Revision 1.8, January 2012

3.1 Concepts and Terminology

private:
friend class odb::access;

person () {}

#pragma db id
unsigned long id_;

%

You may be wondering whether we also have to declare value types as persistent. We don’t need
to do anything special for simple value types suclngas or std::string since the ODB
compiler knows how to map them to suitable database system types and how to convert between
the two. On the other hand, if a simple value is unknown to the ODB compiler then we will need

to provide the mapping to the database system type and, possibly, the code to convert between the
two. For more information on how to achieve this refer todihéype pragma description in
[Section 12.3.1,type "} Similar to object types, composite value types have to be explicitly
declared as persistent using thevalue pragma, for example:

#pragma db value
class name

{

std::string first_;
std::string last_;

%

Composite value types are discussed in more defail in Section 7.2, "Composite Valug Types".

Normally, you would use object types to model real-world entities, things that have their own
identity. For example, in the previous chapter we creatpdrson class to model a person,
which is a real-world entity. Name and age, which we used as data memberpensour class

are clearly values. It is hard to think of age 31 or name "Joe" as having their own identities.

A good test to determine whether something is an object or a value, is to consider if other objects
might reference it. A person is clearly an object because it can be referred to by other objects such
as a spouse, an employer, or a bank. On the other hand, a person’s age or name is not something
that other objects would normally refer to.

Also, when an object represents a real entity, it is easy to choose a suitable object id. For
example, for a person there is an established notion of an identifier (SSN, student id, passport
number, etc). Another alternative is to use a person’s email address as an identifier.

Revision 1.8, January 2012 C++ Object Persistence with ODB 29

3.2 Object and View Pointers

Note, however, that these are only guidelines. There could be good reasons to make something
that would normally be a value an object. Consider, for example, a database that stores a vast
number of people. Many of thgerson objects in this database have the same names and
surnames and the overhead of storing them in every object may negatively affect the perfor-
mance. In this case, we could make the first name and last name each an object and only store
pointers to these objects in therson class.

An instance of a persistent class can be in one of two stirseNnt andpersistent. A transient
instance only has a representation in the application’s memory and will cease to exist when the
application terminates, unless it is explicitly made persistent. In other words, a transient instance
of a persistent class behaves just like an instance of any ordinary C++ class. A persistent instance
has a representation in both the application’s memory and the database. A persistent instance will
remain even after the application terminates unless and until it is explicitly deleted from the
database.

3.2 Object and View Pointers

As we have seen in the previous chapter, some database operations create dynamically allocated
instances of persistent classes and return pointers to these instances. As we will see in later chap-
ters, pointers are also used to establish relationships between ¢bjects (Chapter 6, "Relgtionships")
as well as to cache persistent objects in a segsion (Chapter 10, "$ession"). While in most cases
you won't need to deal with pointers to views, it is possible to a obtain a dynamically allocated
instance of a view using thesult_iterator::load() function [Section 4.4, "Query

Results[).

By default, all these mechanisms use raw pointers to return objects and views as well as to pass
and cache objects. This is normally sufficient for applications that have simple object lifetime
requirements and do not use sessions or object relationships. In particular, a dynamically allo-
cated object or view that is returned as a raw pointer from a database operation can be assigned to
a smart pointer of our choice, for exampgld::auto_ptr or shared_ptr from TR1 or

Boost.

However, to avoid any possibility of a mistake, such as forgetting to use a smart pointer for a
returned object or view, as well as to simplify the use of more advanced ODB functionality, such
as sessions and bidirectional object relationships, it is recommended that you use smart pointers
with the sharing semantics as object and view pointers.siiaeed_ptr smart pointer from

TR1 or Boost is a good default choice.

ODB provides two mechanisms for changing the object or view pointer type. We can use the
--default-pointer option to specify the default pointer. All objects and views that don’t
have the pointer type explicitly specified with ttie pointer pragma (see below) will use the
default pointer type. Refer to the ODB Compiler Command Line Mpanual for details on this
option’s argument. The typical usage is shown below:

30 C++ Object Persistence with ODB Revision 1.8, January 2012

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

3.3 Database

--default-pointer std::trl::shared_ptr

The second mechanism allows us to specify the pointer type on the per object and per view basis
using thedb pointer ~ pragma, for example:

#pragma db object pointer(std::trl::shared_ptr)
class person

{
=

Refer tol Section 12.1.2pbdinter (object)] and Section 12.2.4pdinter (view)'| for more
information on this pragma.

Built-in support that is provided by the ODB runtime library allows us to use the TR1
shared_ptr and std::auto_ptr as pointer types. Plus, ODB profile libraries, that are
available for commonly used frameworks and libraries (such as Boost and Qt), provide support
for smart pointers found in these frameworks and libraries (Part Ill, "Profiles”). It is also easy to
add support for our own smart pointers, as described in Section 6.4, "Using Custom Smart Point-

ferst.

3.3 Database

Before an application can make use of persistence services offered by ODB, it has to create a
database class instance. A database instance is the representation of the place where the applica-
tion stores its persistent objects. We create a database instance by instantiating one of the
database system-specific classes. For exarople,;mysql::database would be such a

class for the MySQL database system. We will also normally pass a database name as an argu-
ment to the class’ constructor. The following code fragment shows how we can create a database
instance for the MySQL database system:

#include <odb/database.hxx>
#include <odb/mysql/database.hxx>

auto_ptr<odb::database> db (
new odb::mysql::database (
"test_user" // database login name
"test_password" // database password
"test_database" // database name

))B

The odb::database class is a common interface for all the database system-specific classes
provided by ODB. You would normally work with the database instance via this interface unless
there is a specific functionality that your application depends on and which is only exposed by a
particular system’slatabase class. You will need to include theodb/database.hxx>

header file to make this class available in your application.

Revision 1.8, January 2012 C++ Object Persistence with ODB 31

3.3 Database

The odb::database interface defines functions for starting transactions and manipulating
persistent objects. These are discussed in detail in the remainder of this chapter as well as the next
chapter which is dedicated to the topic of querying the database for persistent objects. For details
on the system-specifitatabase classes, refer {o Part Il, "Database Systems".

Before we can persist our objects, the corresponding database schema has to be created in the
database. The schema contains table definitions and other relational database artifacts that are
used to store the state of persistent objects in the database.

There are several ways to create the database schema. The easiest is to instruct the ODB compiler
to generate the corresponding schema from the persistent claggserate-schema

option). The ODB compiler can generate the schema either as a standalone SQL file or embedded

into the generated C++ codeschema-format option). If we are using the SQL file to

create the database schema, then this file should be executed, normally only once, before the

application is started.

Alternatively, the schema can be embedded directly into the generated code and we can use the
odb::schema_catalog class to create it in the database from within our application, for
example:

#include <odb/schema-catalog.hxx>

odb::transaction t (db->begin ());
odb::schema_catalog::create_schema (*db);
t.commit ();

Refer to the next section for information on theb::transaction class. The complete
version of the above code fragment is available insitifeema/embedded example in the
odb-examples package.

The odb::schema_catalog class has the following interface. You will need to include the
<odb/schema-catalog.hxx> header file to make this class available in your application.

namespace odb

{

class schema_catalog

{

public:

static void

create_schema (database&, const std::string& name = "");

I3
}

The first argument to thereate_schema() function is the database instance that we would
like to create the schema in. The second argument is the schema name. By default, the ODB
compiler generates all embedded schemas with the default schema name (empty string).

32 C++ Object Persistence with ODB Revision 1.8, January 2012

3.4 Transactions

However, if your application needs to have several separate schemas, you can use the
--schema-name ODB compiler option to assign custom schema names and then use these
names as a second argument doeate schema() . If the schema is not found,
create_schema() throws theodb::unknown_schema exception. The

create_schema() function should be called within a transaction.

Finally, we can also use a custom database schema with ODB. This approach can work similarly
to the standalone SQL file described above except that the database schema is hand-written or
produced by another program. Or we could execute custom SQL statements that create the
schema directly from our application. To map persistent classes to custom database schemas,
ODB provides a wide range of mapping customization pragmas, suctb table |

db column , anddbtype (Chapter 12, "ODB Pragma Langugdge"). For sample code that
shows how to perform such mapping for various C++ constructs, refer $ohtbma/custom

example in the@db-examples package.

3.4 Transactions

A transaction is an atomic, consistent, isolated and durable (ACID) unit of work. Database opera-
tions can only be performed within a transaction and each thread of execution in an application
can have only one active transaction at a time.

By atomicity we mean that when it comes to making changes to the database state within a trans-
action, either all the changes are applied or none at all. Consider, for example, a transaction that
transfers funds between two objects representing bank accounts. If the debit function on the first
object succeeds but the credit function on the second fails, the transaction is rolled back and the
database state of the first object remains unchanged.

By consistency we mean that a transaction must take all the objects stored in the database from
one consistent state to another. For example, if a bank account object must reference a person
object as its owner and we forget to set this reference before making the object persistent, the
transaction will be rolled back and the database will remain unchanged.

By isolation we mean that the changes made to the database state during a transaction are only
visible inside this transaction until and unless it is committed. Using the above example with the
bank transfer, the results of the debit operation performed on the first object is not visible to other
transactions until the credit operation is successfully completed and the transaction is committed.

By durability we mean that once the transaction is committed, the changes that it made to the
database state are permanent and will survive failures such as an application crash. From now on
the only way to alter this state is to execute and commit another transaction.

Revision 1.8, January 2012 C++ Object Persistence with ODB 33

3.4 Transactions

A transaction is started by calling either thaatabase::begin() or connec-
tion::begin() function. The returned transaction handle is stored in an instance of the
odb::transaction class. You will need to include theodb/transaction.hxx>

header file to make this class available in your application. For example:
#include <odb/transaction.hxx>

transaction t (db.begin ()

/I Perform database operations.

t.commit ();

Theodb::transaction class has the following interface:

namespace odb

{

class transaction

{

public:
typedef odb:.database database_type;
typedef odb::connection connection_type;

transaction (transaction_impl*, bool make_current = true)

void
commit ();

void
rollback ();

database_type&
database ();

connection_type&
connection ();

static bool
has_current ();

static transaction&
current ();

static void
current (transaction&);

static bool
reset_current ();

34 C++ Object Persistence with ODB Revision 1.8, January 2012

3.4 Transactions

The commit() function commits a transaction amdliback() rolls it back. Unless the
transaction has bedmalized, that is, explicitly committed or rolled back, the destructor of the
odb::transaction class will automatically roll it back when the transaction instance goes
out of scope. If we try to commit or roll back a finalized transactionottie:transac-
tion_already_finalized exception is thrown.

The database() = accessor returns the database this transaction is working on. Similarly, the
connection() accessor returns the database connection this transaction[is_on (Sectjon 3.5,
['Connectiong").

The staticcurrent() accessor returns the currently active transaction for this thread. If there is
no active transaction, this function throws thagth::not_in_transaction exception. We

can check whether there is a transaction in effect in this thread usimggheurrent()

static function.

The make_current argument in thetransaction constructor as well as the static
current() modifier andreset_current() function give us additional control over the
nomination of the currently active transaction. If we gatse as themake_current argu-

ment, then the newly created transaction will not automatically be made the active transaction for
this thread. Later, we can use the statioent() modifier to set this transaction as the active
transaction. Theeset_current() static function clears the currently active transaction.
Together, these mechanisms allow for more advanced use cases, such as multiplexing two or
more transactions on the same thread. For example:

transaction t1 (db1.begin ()); /I Active transaction.
transaction t2 (db2.begin (), false); // Not active.

/I Perform database operations on db1.
transaction::current (t2); /I Deactivate t1, activate t2.
/I Perform database operations on db2.
transaction::current (t1); /I Switch back to t1.

/I Perform some more database operations on db1.
tl.commit ();

transaction::current (t2); /I Switch to t2.

/I Perform some more database operations on db2.

t2.commit ();

Revision 1.8, January 2012 C++ Object Persistence with ODB 35

3.4 Transactions

Note that in the above discussion of atomicity, consistency, isolation, and durability, all of those
guarantees only apply to the object’s state in the database as opposed to the object’s state in the
application’s memory. It is possible to roll a transaction back but still have changes from this
transaction in the application’s memory. An easy way to avoid this potential inconsistency is to
instantiate persistent objects only within the transaction scope. Consider, for example, these two
implementations of the same transaction:

void
update_age (database& db, person& p)

{
transaction t (db.begin ());

p.age (p.age () + 1);
db.update (p);

t.commit ();

}

In the above implementation, if thgpdate() call fails and the transaction is rolled back, the
state of theperson object in the database and the state of the same object in the application’s
memory will differ. Now consider an alternative implementation which only instantiates the
person object for the duration of the transaction:

void
update_age (database& db, unsigned long id)

{
transaction t (db.begin ());

auto_ptr<person> p (db.load<person> (id));

p.age (p.age () + 1);
db.update (p);

t.commit ();

}

Of course, it may not always be possible to write the application in this style. Oftentimes we need
to access and modify the application’s state of persistent objects out of transactions. In this case it
may make sense to try to roll back the changes made to the application state if the transaction was
rolled back and the database state remains unchanged. One way to do this is to re-load the
object’s state from the database, for example:

void
update_age (database& db, person& p)

try
{
transaction t (db.begin ());

36 C++ Object Persistence with ODB Revision 1.8, January 2012

3.5 Connections

p.age (p.age () + 1);
db.update (p);

t.commit ();

}
catch (...)

{
transaction t (db.begin ());

db.load (p.id (), p);
t.commit ();

throw;

}
}

3.5 Connections

The odb::connection class represents a connection to the database. Normally, you wouldn’t
work with connections directly but rather let the ODB runtime obtain and release connections as
needed. However, certain use cases may require obtaining a connection manually. For complete-
ness, this section describes tomnection class and discusses some of its use cases. You may
want to skip this section if you are reading through the manual for the first time.

Similar toodb::database , theodb::connection class is a common interface for all the
database system-specific classes provided by ODB. For details on the system-apaodc:
tion classes, refer {o Part Il, "Database Systems".

To make theodb::connection class available in your application you will need to include
the <odb/connection.hxx> header file. Th@db::connection class has the following
interface:

namespace odb

{

class connection

{
public:
typedef odb::database database_type;

transaction
begin () = 0;

unsigned long long
execute (const char* statement);

unsigned long long
execute (const std::string& statement);

unsigned long long

Revision 1.8, January 2012 C++ Object Persistence with ODB 37

3.5 Connections

execute (const char* statement, std::size_t length);

database_type&
database ();

I3

typedef details::shared_ptr<connection> connection_ptr;

}

Thebegin() function is used to start a transaction on the connectioneXdéwute() func-

tions allow us to execute native database statements on the connection. Their semantics are equiv-
alent to thedatabase::execute() functions |(Section 3.11, "Executing Native SQL State-
[ments]) except that they can be legally called outside a transaction. Finaltigtiase()

accessor returns a reference to ¢he::database instance to which this connection corre-
sponds.

To obtain a connection we call thatabase::connection() function. The connection is
returned a®db::connection_ptr , which is an implementation-specific smart pointer with

the shared pointer semantics. This, in particular, means that the connection pointer can be copied
and returned from functions. Once the last instana®ohection_ptr pointing to the same
connection is destroyed, the connection is returned taldhebase instance. The following

code fragment shows how we can obtain, use, and release a connection:

using namespace odb::core;

database& db = ...
connection_ptr ¢ (db.connection ());

/I Temporarily disable foreign key constraints.
I
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

/I Start a transaction on this connection.
1
transaction t (c->begin ());

t.commit ();

/I Restore foreign key constraints.

1

c->execute ("SET FOREIGN_KEY_CHECKS =1");

/l When 'c’ goes out of scope, the connection is returned to 'db’.

Some of the use cases which may require direct manipulation of connections include out-of-trans-
action statement execution, such as the execution of connection configuration statements, the
implementation of a connection-per-thread policy, and making sure that a set of transactions is
executed on the same connection.

38 C++ Object Persistence with ODB Revision 1.8, January 2012

3.6 Error Handling and Recovery

3.6 Error Handling and Recovery

ODB uses C++ exceptions to report database operation errors. Most ODB exceptionsiaignify
errors or errors that cannot be corrected without some intervention from the application. For
example, if we try to load an object with an unknown object id, the
odb::object_not_persistent exception is thrown. Our application may be able to
correct this error, for instance, by obtaining a valid object id and trying again. The hard errors and
corresponding ODB exceptions that can be thrown by each database function are described in the
remainder of this chapter with Section 3.13, "ODB _Exceptjons" providing a quick reference for
all the ODB exceptions.

The second group of ODB exceptions sigradjt or recoverable errors. Such errors are tempo-
rary failures which normally can be corrected by simply re-executing the transaction. ODB

defines three such exceptionsodb::connection_lost , odb:timeout , and
odb::deadlock . All recoverable ODB exceptions are derived from the common
odb::recoverable base exception which can be used to handle all the recoverable condi-

tions with a singleatch block.

The odb::connection_lost exception is thrown if a connection to the database is lost in
the middle of a transaction. In this situation the transaction is aborted but it can be re-tried
without any changes. Similarly, tleelb::timeout exception is thrown if one of the database
operations or the whole transaction has timed out. Again, in this case the transaction is aborted
but can be re-tried as is.

If two or more transactions access or modify more than one object and are executed concurrently
by different applications or by different threads within the same application, then it is possible
that these transactions will try to access objects in an incompatible order and deadlock. The
canonical example of a deadlock are two transactions in which the first has motjéetl

and is waiting for the second transaction to commit its changelsjeéot2 so that it can also
updateobject2 . At the same time the second transaction has moddigect2 and is

waiting for the first transaction to commit its changesobgectl because it also needs to
modify objectl . As a result, none of the two transactions can be completed.

The database system detects such situations and automatically aborts the waiting operation in one
of the deadlocked transactions. In ODB this translates tadhedeadlock recoverable
exception being thrown from one of the database functions.

The following code fragment shows how to handle the recoverable exceptions by restarting the
affected transaction:

const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 39

3.7 Making Objects Persistent

try
{
transaction t (db.begin ());

t.commit ();
break;

}

catch (const odb::recoverable& e)
{
if (retry_count > max_retries)
throw retry_limit_exceeded (e.what ());
else
continue;
}
}

3.7 Making Objects Persistent

A newly created instance of a persistent class is transient. We use the
database::persist() function template to make a transient instance persistent. This func-
tion has four overloaded versions with the following signatures:

template <typename T>
typename object_traits<T>:id_type
persist (const T& object);

template <typename T>
typename object_traits<T>:id_type
persist (const object_traits<T>::const_pointer_type& object);

template <typename T>
typename object_traits<T>:id_type
persist (T& object);

template <typename T>
typename object_traits<T>:id_type
persist (const object_traits<T>::pointer_type& object);

Here and in the rest of the manuabbject traits<T>:pointer_type and
object_traits<T>::const_pointer_type denote the unrestricted and constant object
pointer types [(Section 3.2, "Object and View Poinjers"), respectively. Similarly,
object_traits<T>:id_type denotes the object id type. Tbdb::object_traits

template is part of the database support code generated by the ODB compiler.

40 C++ Object Persistence with ODB Revision 1.8, January 2012

3.8 Loading Persistent Objects

The firstpersist() function expects a constant reference to an instance being persisted. The
second function expects a constant object pointer. Both of these functions can only be used on
objects with application-assigned object [ds (Section 12.4u20"").

The second and thingersist() functions are similar to the first two except that they operate

on unrestricted references and object pointers. If the identifier of the object being persisted is
assigned by the database, these functions update the id member of the passed instance with the
assigned value. All four functions return the object id of the newly persisted object.

If the database already contains an object of this type with this identifigreisist() func-

tions throw theodb::object_already_persistent exception. This should never happen

for database-assigned object ids as long as the number of objects persisted does not exceed the
value space of the id type.

When calling thepersist() functions, we don’t need to explicitly specify the template type
since it will be automatically deduced from the argument being passed. The following example
shows how we can call these functions:

person john ("John", "Doe", 33);
shared_ptr<person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long jane_id (db.persist (jane));

t.commit ();

cerr << "Jane’s id: " << jane_id << endl;

Notice that in the above code fragment we have created instances that we were planning to make
persistent before starting the transaction. Likewise, we printed Jane’s id after we have committed
the transaction. As a general rule, you should avoid performing operations within the transaction
scope that can be performed before the transaction starts or after it terminates. An active transac-
tion consumes both your application’s resources, such as a database connection, as well as the
database server’s resources, such as object locks. By following the above rule you make sure
these resources are released and made available to other threads in your application and to other
applications as soon as possible.

3.8 Loading Persistent Objects
Once an object is made persistent, and you know its object id, it can be loaded by the application

using thedatabase::load() function template. This function has two overloaded versions
with the following signatures:

Revision 1.8, January 2012 C++ Object Persistence with ODB 41

3.8 Loading Persistent Objects

template <typename T>
typename object_traits<T>::pointer_type
load (const typename object_traits<T>::id_type& id);

template <typename T>
void
load (const typename object_traits<T>::id_type& id, T& object);

Given an object id, the first function allocates a new instance of the object class in the dynamic
memory, loads its state from the database, and returns the pointer to the new instance. The second
function loads the object's state into an existing instance. Both functions throw
odb::object_not_persistent if there is no object of this type with this id in the
database.

When we call the firsibad() function, we need to explicitly specify the object type. We don’t
need to do this for the second function because the object type will be automatically deduced
from the second argument, for example:

transaction t (db.begin ());

auto_ptr<person> jane (db.load<person> (jane_id));
db.load (jane_id, *jane);

t.commit ();

In certain situations it may be necessary to reload the state of an object from the database. While
this is easy to achieve using the secotwhd() function, ODB provides the
database::reload() function template that has a number of special properties. This func-
tion has two overloaded versions with the following signatures:

template <typename T>
void
reload (T& object);

template <typename T>
void
reload (const object_traits<T>::pointer_type& object);

The firstreload() function expects an object reference, while the second expects an object
pointer. Both functions expect the id member in the passed object to contain a valid object identi-
fier and, similar tdoad() , both will throwodb::object_not_persistent if there is no

object of this type with this id in the database.

The first special property akload() @ compared to théoad() function is that it does not
interact with the session’s object caghe (Section 10.1, "Object Cache"). That is, if the object being
reloaded is already in the cache, then it will remain there i&fk@ad() returns. Similarly, if

42 C++ Object Persistence with ODB Revision 1.8, January 2012

3.9 Updating Persistent Objects

the object is not in the cache, thetoad() won’t put it there either.

The second special property of ttedoad() function only manifests itself when operating on

an object with the optimistic concurrency model. In this case, if the states of the object in the
application memory and in the database are the same, then no reloading will occur. For more
information on optimistic concurrency, refef to Chapter 11, "Optimistic Concurfency".

If we don’t know for sure whether an object with a given id is persistent, we can dsel(he
function instead ofobad() , for example:

template <typename T>
typename object_traits<T>::pointer_type
find (const typename object_traits<T>::id_type& id);

template <typename T>
bool
find (const typename object_traits<T>::id_type& id, T& object);

If an object with this id is not found in the database, thefimg{) function returns &NULL
pointer while the second function leaves the passed instance unmodified andfaétarns

If we don’'t know the object id, then we can use queries to find the object (or objects) matching
some criterial (Chapter 4, "Querying the Datalase"). Note, however, that loading an object’s state
using its identifier can be significantly faster than executing a query.

3.9 Updating Persistent Objects

If a persistent object has been modified, we can store the updated state in the database using the
database::update() function template. This function has three overloaded versions with
the following signatures:

template <typename T>
void
update (const T& object);

template <typename T>
void
update (const object_traits<T>::const_pointer_type& object);

template <typename T>
void
update (const object_traits<T>::pointer_type& object);

The firstupdate() function expects an object reference, while the other two expect object
pointers. If the object passed to one of these functions does not exist in the dajadete€)

throws theodb::object_not_persistent exception (but see a note on optimistic concur-
rency below).

Revision 1.8, January 2012 C++ Object Persistence with ODB 43

3.9 Updating Persistent Objects

Below is an example of the funds transfer that we talked about in the earlier section on transac-
tions. It uses the hypothetidadnk account persistent class:
void
transfer (database& db,
unsigned long from_acc,

unsigned long to_acc,
unsigned int amount)

{
bank_account from, to;
transaction t (db.begin ());

db.load (from_acc, from);

if (from.balance () < amount)
throw insufficient_funds ();

db.load (to_acc, to);

to.balance (to.balance () + amount);
from.balance (from.balance () - amount);

db.update (to);
db.update (from);

t.commit ();

}

The same can be accomplished using dynamically allocated objects apdiside() function
with object pointer argument, for example:

transaction t (db.begin ());
shared_ptr<bank_account> from (db.load<bank_account> (from_acc));

if (from->balance () < amount)
throw insufficient_funds ();

shared_ptr<bank_account> to (db.load<bank_account> (to_acc));

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();

44 C++ Object Persistence with ODB Revision 1.8, January 2012

3.10 Deleting Persistent Objects

If any of theupdate() functions are operating on a persistent class with the optimistic concur-
rency model, then they will throw thab::object_changed exception if the state of the

object in the database has changed since it was last loaded into the application memory. Further-
more, for such classegpdate() no longer throws thebject_not_persistent excep-

tion if there is no such object in the database. Instead, this condition is treated as a change of
object state andbject_changed s thrown instead. For a more detailed discussion of opti-
mistic concurrency, refer o Chapter 11, "Optimistic Concurrency".

In ODB, persistent classes, composite value types, as well as individual data members can be
declared read-only (sge Section 12.1#eationly (object)],[Section 12.3.6,réadonly |
[(composite value)”, and Section 12.4.11@ddonly (data member)™).

If an individual data member is declared read-only, then any changes to this member will be
ignored when updating the database state of an object using any of theuptatef) func-

tions. A const data member is automatically treated as read-only. If a composite value is
declared read-only then all its data members are treated as read-only.

If the whole object is declared read-only then the database state of this object cannot be changed.
Calling any of the abovapdate() functions for such an object will result in a compile-time
error.

3.10 Deleting Persistent Objects

To delete a persistent object’s state from the database we udatalbase::erase() or
database::erase_query() function templates. If the application still has an instance of
the erased object, this instance becomes transientefBise() function has the following
overloaded versions:

template <typename T>
void
erase (const T& object);

template <typename T>
void
erase (const object_traits<T>::const_pointer_type& object);

template <typename T>
void
erase (const object_traits<T>::pointer_type& object);

template <typename T>

void
erase (const typename object_traits<T>::id_type& id);

Revision 1.8, January 2012 C++ Object Persistence with ODB 45

3.10 Deleting Persistent Objects

The firsterase() function uses an object itself, in the form of an object reference, to delete its
state from the database. The next two functions accomplish the same result but using object
pointers. Note that all three functions leave the passed object unchanged. It simply becomes tran-
sient. The last function uses the object id to identify the object to be deleted. If the object does not
exist in the database, then all four functions throw dtlb::object_not_persistent

exception (but see a note on optimistic concurrency below).

We have to specify the object type when calling thedeste() function. The same is unnec-
essary for the first three functions because the object type will be automatically deduced from
their arguments. The following example shows how we can call these functions:

person& john = ...
shared_ptr<jane> jane = ...
unsigned long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase<person> (joe_id);

t.commit ();

If any of theerase() functions except the last one are operating on a persistent class with the
optimistic concurrency model, then they will throw thab::object_changed exception if

the state of the object in the database has changed since it was last loaded into the application
memory. Furthermore, for such classesgrase() no longer throws the
object_not_persistent exception if there is no such object in the database. Instead, this
condition is treated as a change of object stateobjett changed is thrown instead. For a

more detailed discussion of optimistic concurrency, refdr to Chapter 11, "Optimistic Concur-

[rencyt.

Theerase_query() function allows us to delete the state of multiple objects matching certain
criteria. It uses the query expression of tetabase::query() function
['Querying the Databage") and, because the ODB query facility is optional, it is only available if
the --generate-query ODB compiler option was specified. Tleease_query() func-

tion has the following overloaded versions:

template <typename T>
unsigned long long
erase_query ();

template <typename T>

unsigned long long
erase_query (const odb::query<T>&);

46 C++ Object Persistence with ODB Revision 1.8, January 2012

3.11 Executing Native SQL Statements

The firsterase_query() function is used to delete the state of all the persistent objects of a
given type stored in the database. The second function uses the passed query instance to only
delete the state of objects matching the query criteria. Both functions return the number of objects
erased. When calling therase_query() function, we have to explicitly specify the object

type we are erasing. For example:

typedef odb::query<person> query;
transaction t (db.begin ());
db.erase_query<person> (query::last == "Doe" && query::are < 30);

t.commit ();

Unlike thequery() function, when callingerase_query() we cannot use members from
pointed-to objects in the query expression. However, we can still use a member corresponding to
a pointer as an ordinary object member that has the id type of the pointed-to[object (Chapter 6,
['Relationshipg"). This allows us to compare object ids as well as test the poiriteifhrAs an
example, the following transaction makes sure that alethployee objects that reference an
employer object that is about to be deleted are deleted as well. Here we assume that the
employee class contains a pointer to tamployer class. Refer tp Chapter 6, "Relationships"

for complete definitions of these classes.

typedef odb::query<employee> query;
transaction t (db.begin ());
employer& e = ... /[Employer object to be deleted.

db.erase_query<employee> (query::employer == e.id ());
db.erase (e);

t.commit ();

3.11 Executing Native SQL Statements

In some situations we may need to execute native SQL statements instead of using the

object-oriented database API described above. For example, we may want to tune the database
schema generated by the ODB compiler or take advantage of a feature that is specific to the

database system we are using. Gh&base::execute() function, which has three over-

loaded versions, provides this functionality:

Revision 1.8, January 2012 C++ Object Persistence with ODB 47

3.12 Tracing SQL Statement Execution

unsigned long long
execute (const char* statement);

unsigned long long
execute (const std::string& statement);

unsigned long long
execute (const char* statement, std::size_t length)

The firstexecute() function expects the SQL statement as a zero-terminated C-string. The last
version expects the explicit statement length as the second argument and the statement itself may
contain\O’ characters, for example, to represent binary data, if the database system supports it.
All three functions return the number of rows that were affected by the statement. For example:

transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();

While these functions must always be called within a transaction, it may be necessary to execute
a native statement outside a transaction. This can be done usingcotirec-
tion::execute() functions as described|in Section 3.5, "Connectjons".

3.12 Tracing SQL Statement Execution

Oftentimes it is useful to understand what SQL statements are executed as a result of high-level
database operations. For example, we can use this information to figure out why certain transac-
tions don't produce desired results or why they take longer than expected.

While this information can usually be obtained from the database logs, ODB provides an applica-
tion-side SQL statement tracing support that is both more convenient and finer-grained. For
example, in a typical situation that calls for tracing we would like to see the SQL statements
executed as a result of a specific transaction. While it may be difficult to extract such a subset of
statements from the database logs, it is easy to achieve with ODB tracing support:

transaction t (db.begin ());
t.tracer (stderr_tracer);

t.commit ();

48 C++ Object Persistence with ODB Revision 1.8, January 2012

3.12 Tracing SQL Statement Execution

ODB allows us to specify a tracer on the database, connection, and transaction levels. If specified
for the database, then all the statements executed on this database will be traced. On the other
hand, if a tracer is specified for the connection, then only the SQL statements executed on this
connection will be traced. Similarly, a tracer specified for a transaction will only show statements
that are executed as part of this transaction. All three classels::database
odb::connection , andodb::transaction) provide the identical tracing API:

void
tracer (odb::tracer&);

void
tracer (odb::tracer*);

odb::tracer*
tracer () const;

The first twotracer() functions allow us to set the tracer object with the second one allowing
us to clear the current tracer by passingli_L pointer. The lastracer() function allows us

to get the current tracer object. It returnN@ALL pointer if there is no tracer in effect. Note that

the tracing API does not manage the lifetime of the tracer object. The tracer should be valid for as
long as it is being used. Furthermore, the tracing API is not thread-safe. Trying to set a tracer
from multiple threads simultaneously will result in undefined behavior.

The odb::tracer class defines a callback interface that can be used to create custom tracer
implementations. Thedb::stderr_tracer is a built-in tracer implementation provided by
the ODB runtime. It prints each executed SQL statement to the standard error stream.

The odb::tracer class is defined in theodb/tracer.hxx> header file which you will
need to include in order to make this class available in your applicationodhgracer
interface provided the following callback functions:

namespace odb

{

class tracer

{
public:
virtual void
prepare (connection&, const statement&);

virtual void
execute (connection&, const statement&);

virtual void
execute (connection&, const char* statement) = 0;

Revision 1.8, January 2012 C++ Object Persistence with ODB 49

3.12 Tracing SQL Statement Execution

virtual void
deallocate (connection&, const statement&);
I3
}
The prepare() and deallocate() functions are called when a prepared statement is

created and destroyed, respectively. The &sstcute() function is called when a prepared
statement is executed while the second one is called when a normal statement is executed. The
default implementations for therepare() = anddeallocate() functions do nothing while

the firstexecute() function calls the second one passing the statement text as the second argu-
ment. As a result, if all you are interested in are the SQL statements being executed, then you
only need to override the secoexkcute() function.

In addition to the commorodb::tracer interface, each database runtime provides a
database-specific version adb::<database>::tracer . It has exactly the same interface
as the common version except that tleennection and statement types are
database-specific, which gives us access to additional, database-specific information.

As an example, consider a more elaborate, PostgreSQL-specific tracer implementation. Here we
rely on the fact that the PostgreSQL ODB runtime uses names to identify prepared statements and
this information can be obtained from theb::pgsql::statement object:

#include <odb/pgsql/tracer.hxx>
#include <odb/pgsgl/database.hxx>
#include <odb/pgsgl/connection.hxx>
#include <odb/pgsgl/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer
{
virtual void
prepare (odb::pgsqgl::connection& ¢, const odb::pgsql::statement& s)

{
cerr << c.database ().db () << ": PREPARE " << s.name ()

<<" AS " << s.text () << endl;

}

virtual void
execute (odb::pgsqgl::connection& ¢, const odb::pgsql::statement& s)

{

cerr << c.database ().db () <<": EXECUTE " << s.name () << endl;

}

virtual void
execute (odb::pgsql::connection& c, const char* statement)

{

cerr << c.database ().db () <<": " << statement << end|;

}

50 C++ Object Persistence with ODB Revision 1.8, January 2012

3.13 ODB Exceptions

virtual void
deallocate (odb::pgsql::connection& c, const odb::pgsql::statement& s)

{
cerr << c.database ().db () << ": DEALLOCATE " << s.name () << endl;

}
h

Note also that you can only set a database-specific tracer object using a database-specific
database instance, for example:

pgsql_tracer tracer;

odb::database& db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database& db = ...;
db.tracer (tracer); // Ok.

3.13 ODB Exceptions

In the previous sections we have already mentioned some of the exceptions that can be thrown by
the database functions. In this section we will discuss the ODB exception hierarchy and document
all the exceptions that can be thrown by the common ODB runtime.

The root of the ODB exception hierarchy is the abstoalt:exception class. This class
derives fromstd::exception and has the following interface:
namespace odb
{
struct exception: std::exception
{

virtual const char*
what () const throw () = 0;

I3
}

Catching this exception guarantees that we will catch all the exceptions thrown by ODB. The
what() function returns a human-readable description of the condition that triggered the excep-
tion.

The concrete exceptions that can be thrown by ODB are presented in the following listing:

namespace odb

{

struct null_pointer: exception

{

virtual const char*
what () const throw ();

Revision 1.8, January 2012 C++ Object Persistence with ODB 51

3.13 ODB Exceptions

h

/I Transaction exceptions.

I

struct already _in_transaction: exception
{

virtual const char*

what () const throw ();

I3

struct not_in_transaction: exception

{

virtual const char*
what () const throw ();

I3

struct transaction_already_finalized: exception

{

virtual const char*
what () const throw ();

I3

/I Session exceptions.
I
struct already _in_session: exception

{

virtual const char*
what () const throw ();

I3

struct not_in_session: exception

{

virtual const char*
what () const throw ();

I3

/I Database operations exceptions.
1
struct recoverable: exception

{
h

struct connection_lost: recoverable

{

virtual const char*
what () const throw ();

}1
struct timeout: recoverable

{

virtual const char*

52 C++ Object Persistence with ODB

Revision 1.8, January 2012

what () const throw ();

I3

struct deadlock: recoverable
{

virtual const char*

what () const throw ();

I3

struct object_not_persistent: exception
{

virtual const char*

what () const throw ();

I3

struct object_already_persistent: exception
{

virtual const char*

what () const throw ();

I3

struct object_changed: exception
{

virtual const char*

what () const throw ();

I3

struct result_not_cached: exception
{

virtual const char*

what () const throw ();

I3

struct database_exception: exception

{
h

/I Schema catalog exceptions.
1
struct unknown_schema: exception
{
const std::string&
name () const;

virtual const char*
what () const throw ();
3
}

Revision 1.8, January 2012 C++ Object Persistence with ODB

3.13 ODB Exceptions

53

3.13 ODB Exceptions

The null_pointer exception is thrown when a pointer to a persistent object declared
nonNULL with the db not_null or db value_not_null pragma has th&lULL value.
Seq Chapter 6, "Relationships" for details.

The next three exceptionsalfeady in_transaction , nhot_in_transaction ,
transaction_already_finalized) are thrown by th@db::transaction class and
are discussed |n Section 3.4, "Transactions".

The next two exceptionslfeady_in_session , andnot_in_session) are thrown by
theodb::session class and are discussed in Chapter 10, "Segsion".

The recoverable exception serves as a common base for all the recoverable exceptions,
which are: connection_lost , timeout , and deadlock . The connection_lost

exception is thrown when a connection to the database is lost. Similariynéuoait exception

is thrown if one of the database operations or the whole transaction has timed algadhe

lock exception is thrown when a transaction deadlock is detected by the database system. These
exceptions can be thrown by any database functior]. See Section 3.6, "Error Handling anld Recov-

for details.

The object_already_persistent exception is thrown by theersist() database
function. Se¢ Section 3.7, "Making Objects Persigtent" for details.

The object_not_persistent exception is thrown by théoad() , update() , and
erase() database functions. Refer[to Section 3.8, "Loading Persistent Objects", Section 3.9,
['Updating Persistent Objects"”, dnd Section 3.10, "Deleting Persistent Qbjects" for more informa-
tion.

The object_changed exception is thrown by thepdate() database function and certain
erase() database functions when operating on objects with the optimistic concurrency model.
Sed Chapter 11, "Optimistic Concurrency" for details.

Theresult_not_cached exception is thrown by the query result class. Refgr to Sectign 4.4,
['Query Resulf" for details.

The database_exception exception is a base class for all database system-specific excep-
tions that are thrown by the database system-specific runtime library. Refer to Part Il, "Database

Systemsg" for more information.

The unknown_schema exception is thrown by thedb::schema_catalog class if a
schema with the specified name is not found. Refer to Section 3.3, "Database" for details.

The odb::exception class is defined in theodb/exception.hxx> header file. All the
concrete ODB exceptions are defined 4odb/exceptions.hxx> which also includes
<odb/exception.hxx> . Normally you don’t need to include either of these two headers

54 C++ Object Persistence with ODB Revision 1.8, January 2012

3.13 ODB Exceptions

because they are automatically included<oglb/database.hxx> . However, if the source
file that handles ODB exceptions does not incladdb/database.hxx> , then you will need
to explicitly include one of these headers.

Revision 1.8, January 2012 C++ Object Persistence with ODB 55

4 Querying the Database

4 Querying the Database

If we don’t know the identifiers of the objects that we are looking for, we can use queries to
search the database for objects matching certain criteria. The ODB query facility is optional and
we need to explicitly request the generation of the necessary database support code with the
--generate-query ODB compiler option.

ODB provides a flexible query API that offers two distinct levels of abstraction from the database
system query language such as SQL. At the high level we are presented with an easy to use yet
powerful object-oriented query language, called ODB Query Language. This query language is
modeled after and is integrated into C++ allowing us to write expressive and safe queries that
look and feel like ordinary C++. We have already seen examples of these queries in the introduc-
tory chapters. Below is another, more interesting, example:

typedef odb::query<person> query;
typedef odb::result<person> result;

unsigned short age;
query g (query::first == "John" && query::age < query::_ref (age));

for (age = 10; age < 100; age += 10)
{

result r (db.query<person> (q));
}

At the low level, queries can be written as predicates using the database system-native query
language such as thHERPpredicate from the SQBELECT statement. This language will be
referred to as native query language. At this level ODB still takes care of converting query
parameters from C++ to the database system format. Below is the re-implementation of the above
example using SQL as the native query language:

query q ("first = "John’ AND age =" + query::_ref (age));

Note that at this level we lose the static typing of query expressions. For example, if we wrote
something like this:

query g (query::first == 123 && query::agee < query::_ref (age));

We would get two errors during the C++ compilation. The first would indicate that we cannot
compare query::first to an integer and the second would pick the misspelling in
query::agee . On the other hand, if we wrote something like this:

56 C++ Object Persistence with ODB Revision 1.8, January 2012

4.1 ODB Query Language

query g ("first = 123 AND agee =" + query::_ref (age));
It would compile fine and would trigger an error only when executed by the database system.

We can also combine the two query languages in a single query, for example:

query g ("first = "John™ + (query::age < query::_ref (age)));

4.1 ODB Query Language

An ODB query is an expression that tells the database system whether any given object matches
the desired criteria. As such, a query expression always evaluate® asor false . At the

higher level, an expression consists of other expressions combined with logical operators such as
&& (AND), || (OR), and (NOT). For example:

typedef odb::query<person> query;
query g (query::first == "John" || query::age == 31);

At the core of every query expression lie simple expressions which involve one or more object
members, values, or parameters. To refer to an object member we use an expression such as
query::first above. The names of members indjuery class are derived from the names

of data members in the object class by removing the common member name decorations, such as
leading and trailing underscores, the prefix, etc.

In a simple expression an object member can be compared to a value, parameter, or another

member using a number of predefined operators and functions. The following table gives an
overview of the available expressions:

Revision 1.8, January 2012 C++ Object Persistence with ODB 57

4.1 ODB Query Language

Operator Description Example

== equal query::age == 31

I= unequal guery::age != 31

< less than query::age < 31

> greater than query::age > 31

<= less than or equal guery::age <= 31

>= greater than or equal | query::age >= 31

in() one of the values guery::age.in (30, 32, 34)
in_range() :):r:aggf the values in ggg;y::age.in_range (begin,
is_null() value is NULL query::age.is_null ()
is_not_null() value is not NULL query::age.is_not_null ()
Thein() function accepts a maximum of five arguments. Usertheange() function if

you need to compare to more than five values. This function accepts a pair of standard C++ itera-
tors and compares to all the values fromliagin position inclusive and until and excluding the
end position. The following code fragment shows how we can use these functions:

std::vector<string> names;

names.push_back ("John");
names.push_back ("Jack");
names.push_back ("Jane");

query gl (query::first.in ("John", "Jack", "Jane"));
query g2 (query::first.in_range (names.begin (), names.end ()));

The operator precedence in the query expressions are the same as for equivalent C++ operators.
We can use parentheses to make sure the expression is evaluated in the desired order. For
example:

query g ((query::first == "John" || query::first == "Jane") &&
query::age < 31);

58 C++ Object Persistence with ODB Revision 1.8, January 2012

4.2 Parameter Binding

4.2 Parameter Binding

An instance of thedb::query class encapsulates two parts of information about the query:
the query expression and the query parameters. Parameters can be bound to C++ variables either
by value or by reference.

If a parameter is bound by value, then the value for this parameter is copied from the C++ vari-
able to the query instance at the query construction time. On the other hand, if a parameter is
bound by reference, then the query instance stores a reference to the bound variable. The actual
value of the parameter is only extracted at the query execution time. Consider, for example, the
following two queries:

string name ("John");

query gl (query::first == query::_val (name));
query g2 (query::first == query::_ref (name));

name = "Jane";

db.query<person> (ql); // Find John.
db.query<person> (q2); // Find Jane.

Theodb::query class provides two special functionsal() and_ref() , that allow us to

bind the parameter either by value or by reference, respectively. In the ODB query language, if
the binding is not specified explicitly, the value semantic is used by default. In the native query
language, binding must always be specified explicitly. For example:

query gl (query::age < age); /I By value.
query g2 (query::age < query::_val (age)); // By value.
guery g3 (query::age < query::_ref (age)); // By reference.

query g4 ("age <" + age); /I Error.
query g5 ("age <" + query::_val (age)); // By value.
query g6 ("age <" + query::_ref (age)); // By reference.

A query that only has by-value parameters does not depend on any other variables and is
self-sufficient once constructed. A query that has one or more by-reference parameters depends
on the bound variables until the query is executed. If one such variable goes out of scope and we
execute the query, the behavior is undefined.

4.3 Executing a Query

Once we have the query instance ready and by-reference parameters initialized, we can execute
the query using thdatabase::query() function template. It has two overloaded versions:

Revision 1.8, January 2012 C++ Object Persistence with ODB 59

4.3 Executing a Query

template <typename T>
result<T>
query (bool cache = true);

template <typename T>
result<T>
query (const odb::query<T>&, bool cache = true);

The firstquery() function is used to return all the persistent objects of a given type stored in
the database. The second function uses the passed query instance to only return objects matching
the query criteria. Theache argument determines whether the objects’ states should be cached

in the application’s memory or if they should be returned by the database system one by one as
the iteration over the result progresses. The result caching is discussed in detail in the next
section.

When calling thequery() function, we have to explicitly specify the object type we are query-
ing. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

result all (db.query<person> ());
result johns (db.query<person> (query::first == "John"));

Note that it is not required to explicitly create a named query variable before executing it. For
example, the following two queries are equivalent:

query g (query::first == "John");

result r1 (db.query<person> (q));
result r1 (db.query<person> (query::first == "John"));

Normally, we would create a named query instance if we are planning to run the same query
multiple times and would use the in-line version for those that are executed only once. A named
query instance that does not have any by-reference parameters is immutable and can be shared
between multiple threads without synchronization. On the other hand, a query instance with
by-reference parameters is modified every time it is executed. If such a query is shared among
multiple threads, then access to this query instance must be synchronized from the execution
point and until the completion of the iteration over the result.

It is also possible to create queries from other queries by combining them using logical operators.
For example:

60 C++ Object Persistence with ODB Revision 1.8, January 2012

4.4 Query Result

result
find_minors (database& db, const query& name_query)

{

return db.query<person> (name_query && query::age < 18);

}

result r (find_underage (db, query::first == "John"));

4.4 Query Result

The result of executing a query is zero, one, or more objects matching the query criteria. The
result is returned as an instance ofdlb::result class template, for example:

typedef odb::query<person> query;
typedef odb::result<person> result;

result johns (db.query<person> (query::first == "John"));

It is best to view an instance otlb::result as a handle to a stream, such as a file stream.
While we can make a copy of a result or assign one result to another, the two instances will refer
to the same result stream. Advancing the current position in one instance will also advance it in
another. The result instance is only usable within the transaction it was created in. Trying to
manipulate the result after the transaction has terminated leads to undefined behavior.

Theodb::result class template conforms to the standard C++ sequence requirements and has
the following interface:

namespace odb

{

template <typename T>
class result

{
public:
typedef odb::result_iterator<T> iterator;

public:
result ();

result (const result&);

result&
operator= (const result&);

void
swap (result&)

public:

iterator
begin ();

Revision 1.8, January 2012 C++ Object Persistence with ODB 61

4.4 Query Result

iterator
end ();

public:
void
cache ();

bool
empty () const;

std::size_t
size () const;
I3
}

The default constructor creates an empty result setcdtiee() function caches the returned
objects’ state in the application’s memory. We have already mentioned result caching when we
talked about query execution. As you may rememberdtitabase::query() function
caches the result unless instructed not to by the callercadiee() function allows us to cache

the result at a later stage if it wasn’t already cached during query execution.

If the result is cached, the database state of all the returned objects is stored in the application’s
memory. Note that the actual objects are still only instantiated on demand during result iteration.
It is the raw database state that is cached in memory. In contrast, for uncached results the object’s
state is sent by the database system one object at a time as the iteration progresses.

Uncached results can improve the performance of both the application and the database system in
situations where we have a large number of objects in the result or if we will only examine a
small portion of the returned objects. However, uncached results have a number of limitations.
There can only be one uncached result in a transaction. Creating another result (cached or
uncached) by callingdatabase::query() will invalidate the existing uncached result.
Furthermore, calling any other database functions, suaipdate() or erase() will also
invalidate the uncached result.

Theempty() function returngrue if there are no objects in the result dal$e otherwise.
Thesize() function can only be called for cached results. It returns the number of objects in
the result. If we call this function on an uncached result,oth®:result not cached

exception is thrown.

To iterate over the objects in a result we usebégin() andend() functions together with
theodb::result<T>::iterator type, for example:

62 C++ Object Persistence with ODB Revision 1.8, January 2012

4.4 Query Result

result r (db.query<person> (query::first == "John"));

for (result::iterator i (r.begin ()); i !=r.end (); ++i)

{
=

The result iterator is an input iterator which means that the only two position operations that it
supports are to move to the next object and to determine whether the end of the result stream has
been reached. In fact, the result iterator can only be in two states: the current position and the end
position. If we have two iterators pointing to the current position and then we advance one of
them, the other will advance as well. This, for example, means that it doesn’'t make sense to store
an iterator that points to some object of interest in the result stream with the intent of dereferenc-
ing it after the iteration is over. Instead, we would need to store the object itself.

The result iterator has the following dereference functions that can be used to access the
pointed-to object:

namespace odb

{

template <typename T>
class result_iterator

{
public:
T*
operator-> () const;

T&
operator* () const;

typename object_traits<T>::pointer_type
load ();

void
load (T& X);

typename object_traits<T>::id_type
id ();
h
}

When we call th& or-> operator, the iterator will allocate a new instance of the object class in
the dynamic memory, load its state from the database state, and return a reference or pointer to
the new instance. The iterator maintains the ownership of the returned object and will return the
same pointer for subsequent calls to either of these operators until it is advanced to the next object
or we call the firstoad() function (see below). For example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 63

4.4 Query Result

result r (db.query<person> (query::first == "John"));
for (result::iterator i (r.begin ()); i I=r.end ();)

cout << i->last () << endl; // Create an object.

person& p (*i); /I Reference to the same object.
cout << p.age () << endl;

++i; Il Free the object.

}

The overloadedesult_iterator::load() functions are similar to

database::load() . The first function returns a dynamically allocated instance of the current
object. As an optimization, if the iterator already owns an object as a result of an earlier call to the
* or -> operator, then it relinquishes the ownership of this object and returns it instead. This
allows us to write code like this without worrying about a double allocation:

result r (db.query<person> (query::first == "John"));

for (result::iterator i (r.begin ()); i !=r.end (); ++i)

{

if (i->last == "Doe")

{
auto_ptr p (i.load ());

}
}

Note, however, that because of this optimization, a subsequedad) call to the* or ->
operator results in the allocation of a new object.

The secondoad() function allows us to load the current object's state into an existing
instance. For example:

result r (db.query<person> (query::first == "John"));

person p;
for (result::iterator i (r.begin ()); i !=r.end (); ++i)

{
i.load (p);

cout << p.last () << endl;
cout << i.age () << endl;

}

Theid() function return the object id of the current object. While we can achieve the same by
loading the object and getting its id, this function is more efficient since it doesn’t actually create
the object. This can be useful when all we need is the object’s identifier. For example:

64 C++ Object Persistence with ODB Revision 1.8, January 2012

4.4 Query Result

std::set<unsigned long> set = ...; // Persons of interest.
result r (db.query<person> (query::first == "John"));

for (result::iterator i (r.begin ()); i I=r.end (); ++i)

{i{f (set.find (i.id ()) != set.end ()) // No object loaded.

cout << i->first () << endl; // Object loaded.

}
}

Revision 1.8, January 2012 C++ Object Persistence with ODB 65

5 Containers

5 Containers

The ODB runtime library provides built-in persistence support for all the commonly used stan-
dard C++ containers, namelstd::vector , std::list , std::set , std::multiset ,
std::map , and std::multimap . Plus, ODB profile libraries, that are available for
commonly used frameworks and libraries (such as Boost and Qt), provide persistence support for
containers found in these frameworks and libraties (Part Ill, "Pragfiles"). It is also easy to persist
custom container types as discussed later in Section 5.4, "Using Custom Containers".

We don't need to do anything special to declare a member of a container type in a persistent
class. For example:

#pragma db object
class person

{

private:
std::vector<std::string> nicknames_;

};...

The complete version of the above code fragment and the other code samples presented in this
chapter can be found in tkentainer example in th@db-examples package.

A data member in a persistent class that is of a container type behaves like a value type. That is,

when an object is made persistent, the elements of the container are stored in the database. Simi-
larly, when a persistent object is loaded from the database, the contents of the container are auto-
matically loaded as well. A data member of a container type can also use a smart pointer, as

discussed ih Section 7.3, "Pointers &idlLL Value Semantics".

While an ordinary member is mapped to one or more columns in the object’s table, a member of a
container type is mapped to a separate table. The exact schema of such a table depends on the
kind of container. ODB defines the following container kinds: ordered, set, multiset, map, and
multimap. The container kinds and the contents of the tables to which they are mapped are
discussed in detail in the following sections.

Containers in ODB can contain simple value types (Section 7.1, "Simple Value|Types"), compos-
ite value types[(Section 7.2, "Composite Value Tylpes"), and pointers to olpjects (Chdpter 6,
['Relationshipg"). Containers of containers, either directly or indirectly via a composite value
type, are not allowed. A key in a map or multimap container can be a simple or composite value
type but not a pointer to an object. An index in the ordered container should be a simple integer
value type.

66 C++ Object Persistence with ODB Revision 1.8, January 2012

5.1 Ordered Containers

The value type in the ordered, set, and map containers as well as the key type in the map contain-
ers should be default-constructible. The default constructor in these types can be made private in
which case theodb::access class should be made a friend of the value or key type. For
example:

#pragma db value
class name

{
public:
name (const std::string&, const std::string&);

private:
friend class odb::access;
name ();

};...

#pragma db object
class person

{

private:
std::vector<name> aliases_;

};...

5.1 Ordered Containers

In ODB an ordered container is any container that maintains (explicitly or implicitly) an order of

its elements in the form of an integer index. Standard C++ containers that are ordered include
std::vector and std::list . While elements irstd::set are also kept in a specific

order, this order is not based on an integer index but rather on the relationship between elements.
As a resultstd::set is not considered an ordered container for the purpose of persistence.

The database table for an ordered container consists of at least three columns. The first column
contains the object id of a persistent class instance of which the container is a member. The
second column contains the element index within a container. And the last column contains the
element value. If the object id or element value are composite, then, instead of a single column,
they can occupy multiple columns.

Consider the following persistent object as an example:
#pragma db object

class person

{

private:

Revision 1.8, January 2012 C++ Object Persistence with ODB 67

5.1 Ordered Containers

#pragma db id auto
unsigned long id_;

std::vector<std::string> nicknames_;

};...

The resulting database table (calEson_nicknames) will contain the object id column of
type unsigned long (called object_id), the index column of an integer type (called
index), and the value column of tyéd::string (calledvalue).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of an ordered container both, on the per-container and per-member basis. For more
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person

{

private:

#pragma db table("nicknames") \
id_column("person_id") \
index_type("SMALLINT UNSIGNED") \
index_column("nickname_number") \
value_type("VARCHAR(255)") \
value_column("nickname")

std::vector<std::string> nicknames_;

};...

While the C++ container used in a persistent class may be ordered, sometimes we may wish to
store such a container in the database without the order information. In the example above, for
instance, the order of person’s nicknames is probably not important. To instruct the ODB
compiler to ignore the order in ordered containers we can usdbtbeordered pragma
(Section 12.3.7,unordered "} [Section 12.4.13,Uuhordered "). For example:

#pragma db object
class person

{

private:
#pragma db unordered
std::vector<std::string> nicknames_;

};...

68 C++ Object Persistence with ODB Revision 1.8, January 2012

5.2 Set and Multiset Containers

The table for an ordered container that is marked unordered won’'t have the index column and the
order in which elements are retrieved from the database may not be the same as the order in
which they were stored.

5.2 Set and Multiset Containers

In ODB set and multiset containers (referred to as just set containers) are associative containers
that contain elements based on some relationship between them. A set container may or may not
guarantee a particular order of the elements that it stores. Standard C++ containers that are
considered set containers for the purpose of persistence irstthdeet andstd::multi-

set .

The database table for a set container consists of at least two columns. The first column contains
the object id of a persistent class instance of which the container is a member. And the second
column contains the element value. If the object id or element value are composite, then, instead
of a single column, they can occupy multiple columns.

Consider the following persistent object as an example:

#pragma db object
class person

{

private:
#pragma db id auto
unsigned long id_;

std::set<std::string> emails_;

3

The resulting database table (calpEison_emails) will contain the object id column of type
unsigned long (calledobject_id) and the value column of typd::string (called
value).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a set container, both on the per-container and per-member basis. For more
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

#pragma db object
class person

{

private:
#pragma db table("emails") \

Revision 1.8, January 2012 C++ Object Persistence with ODB 69

5.3 Map and Multimap Containers

id_column("person_id") \

value_type("VARCHAR(255)") \

value_column("email")
std::set<std::string> emails_;

};...

5.3 Map and Multimap Containers

In ODB map and multimap containers (referred to as just map containers) are associative contain-
ers that contain key-value elements based on some relationship between keys. A map container
may or may not guarantee a particular order of the elements that it stores. Standard C++ contain-
ers that are considered map containers for the purpose of persistence stdiudap and
std::multimap

The database table for a map container consists of at least three columns. The first column
contains the object id of a persistent class instance of which the container is a member. The
second column contains the element key. And the last column contains the element value. If the
object id, element key, or element value are composite, then instead of a single column they can
occupy multiple columns.

Consider the following persistent object as an example:

#pragma db object
class person

{

private:
#pragma db id auto
unsigned long id_;

std::map<unsigned short, float> age_weight_map_;

};...

The resulting database table (calleerson_age weight_ map) will contain the object id
column of typeunsigned long (calledobject_id), the key column of typensigned
short (calledkey), and the value column of tyfleat (calledvalue).

A number of ODB pragmas allow us to customize the table name, column names, and native
database types of a map container, both on the per-container and per-member basis. For more
information on these pragmas, refer| to Chapter 12, "ODB Pragma Language". The following
example shows some of the possible customizations:

70 C++ Object Persistence with ODB Revision 1.8, January 2012

5.4 Using Custom Containers

#pragma db object
class person

{

private:

#pragma db table("weight_map") \
id_column("person_id") \
key_type("INT UNSIGNED") \
key_ column("age") \
value_type("DOUBLE") \
value_column("weight")

std::map<unsigned short, float> age_weight_map_;

};...

5.4 Using Custom Containers

While the ODB runtime and profile libraries provide support for a wide range of containers, it is
also easy to persist custom container types.

To achieve this you will need to implement ttentainer_traits class template specializa-
tion for your container. First, determine the container kind (ordered, set, multiset, map, or
multimap) for your container type. Then use a specialization for one of the standard C++ contain-
ers found in the common ODB runtime libralp¢db) as a base for your own implementation.

Once the container traits specialization is ready for your container, you will need to include it into
the ODB compilation process using thedb-epilogue option and into the generated header

files with the --hxx-prologue option. As an example, suppose we have a hash table
container for which we have the traits specialization implemented in the
hashtable-traits.hxx file. Then, we can create an ODB compiler options file for this

container and save it ttashtable.options

Options file for the hash table container.

#

--odb-epilogue '#include "hashtable-traits.hxx™
--hxx-prologue "#include "hashtable-traits.hxx"

Now, whenever we compile a header file that uses the hashtable container, we can specify the
following command line option to make sure it is recognized by the ODB compiler as a container
and the traits file is included in the generated code:

--options-file hashtable.options

Revision 1.8, January 2012 C++ Object Persistence with ODB 71

6 Relationships

6 Relationships

Relationships between persistent objects are expressed with pointers or containers of pointers.
The ODB runtime library provides built-in support for the TRiared ptr /weak ptr ,
std::auto_ptr , and raw pointers. Plus, ODB profile libraries, that available for commonly
used frameworks and libraries (such as Boost and Qt), provide support for smart pointers found in
these frameworks and librarigs (Part Ill, "Profiles"). It is also easy to add support for a custom
smart pointer as discussed latef in Section 6.4, "Using Custom Smart Ppinters". Any supported
smart pointer can be used in a data member as long as it can be explicitly constructed from the
canonical object pointef (Section 3.2, "Object and View Pointers"). For example, we can use
weak_ptr if the object pointer ishared_ptr

When an object containing a pointer to another object is loaded, the pointed-to object is loaded as
well. In some situations this eager loading of the relationships is undesirable since it can lead to a
large number of otherwise unused objects being instantiated from the database. To support finer
control over relationships loading, the ODB runtime and profile libraries provide the so-called
lazy versions of the supported pointers. An object pointed-to by a lazy pointer is not loaded auto-
matically when the containing object is loaded. Instead, we have to explicitly request the instanti-
ation of the pointed-to object. Lazy pointers are discussed in detail in Section 6.3, "Lazy Point-

ferst.

As a simple example, consider the following employee-employer relationship. Code examples
presented in this chapter will use gteared_ptr andweak_ptr smart pointers from the TR1
(std::trl1) namespace.

#pragma db object
class employer

{

#pragma db id
std::string name_;

%

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

std::string first_name_;

72 C++ Object Persistence with ODB Revision 1.8, January 2012

6 Relationships

std::string last_name_;

shared_ptr<employer> employer_;

%

By default, an object pointer can bBJLL To specify that a pointer always points to a valid
object we can use tht_null pragmal(Section 12.4.4dll_/not _null ") for single object
pointers and thealue_not_null pragma|(Section 12.4.18,

['value _null _ /value not_null ") for containers of object pointers. For example:

#pragma db object
class employee

{

#pragma db not_null
shared_ptr<employer> current_employer_;

#pragma db value_not_null
std::vector<shared_ptr<employer> > previous_employers_;

3

In this case, if we perform a database operation on eifmployee object and the
current_employer_ pointer or one of the pointers stored in pinevious_employers_
container iNULL, then theodb::null_pointer exception will be thrown.

We don’t need to do anything special to establish or navigate a relationship between two persis-
tent objects, as shown in the following code fragment:

/I Create an employer and a few employees.

1

unsigned long john_id, jane_id;

{
shared_ptr<employer> er (new employer ("Example Inc"));
shared_ptr<employee> john (new employee ("John", "Doe"));
shared_ptr<employee> jane (new employee ("Jane", "Doe"));

john->employer_ = er;
jane->employer_ = er;

transaction t (db.begin ());
db.persist (er);
john_id = db.persist (john);

jane_id = db.persist (jane);

t.commit ();

Revision 1.8, January 2012 C++ Object Persistence with ODB 73

6 Relationships

/I Load a few employee objects and print their employer.
I

{

session s;
transaction t (db.begin ());

shared_ptr<employee> john (db.load<employee> (john_id));
shared_ptr<employee> jane (db.load<employee> (jane_id));

cout << john->employer_->name_ << endl;
cout << jane->employer_->name_ << endl;

t.commit ();

}

The only notable line in the above code is the creation of a session before the second transaction
starts. As discussed [in_ Chapter 10, "Seskion", a session acts as a cache of persistent objects. By
creating a session before loading #mployee objects we make sure that themployer

pointers point to the samemployer object. Without a session, eaemployee would have

ended up pointing to its own, private instance of the Example Inc employer.

As a general guideline, you should use a session when loading objects that have pointers to other
persistent objects. A session makes sure that for a given object id, a single instance is shared
among all other objects that relate to it.

We can also use data members from pointed-to objects in database gueries (Chapter 4, ['Querying
the Databasg"). For each pointer in a persistent class, the query class defines a smart pointer-like
member that contains members corresponding to the data members in the pointed-to object. We
can then use the access via a pointer syntax to refer to data members in pointed-to objects.

For example, the query class for temployee object contains themployer member (its

name is derived from themployer_ pointer) which in turn contains theame member (its

name is derived from themployer::name_ data member of the pointed-to object). As a
result, we can use tlgpiery::employer->name expression while querying the database for

the employee objects. For example, the following transaction finds all the employees of
Example Inc that have the Doe last name:

typedef odb::query<employee> query;
typedef odb::result<employee> result;

session s;
transaction t (db.begin ());

result r (db.query<employee> (
query::employer->name == "Example Inc" && query::last == "Doe"));

74 C++ Object Persistence with ODB Revision 1.8, January 2012

6.1 Unidirectional Relationships

for (result::iterator i (r.begin ()); i I=r.end (); ++i)
cout << i->first_ << "" <<i->last_ << endl;

t.commit ();

A query class member corresponding to a non-invgrse (Section 6.2, "Bidirectional Relation-
[ships}) object pointer can also be used as a normal member that has the id type of the pointed-to
object. For example, the following query locates all éngployee objects that don’t have an
associate@mployer object:

result r (db.query<employee> (query::employer.is_null ()));

An important concept to keep in mind when working with object relationships is the indepen-
dence of persistent objects. In particular, when an object containing a pointer to another object is
made persistent or is updated, the pointed-to object is not automatically persisted or updated.
Rather, only a reference to the object (in the form of the object id) is stored for the pointed-to
object in the database. The pointed-to object itself is a separate entity and should be made persis-
tent or updated independently.

When persisting or updating an object containing a pointer to another object, the pointed-to object
must have a valid object id. This, however, may not always be easy to achieve in complex rela-
tionships that involve objects with automatically assigned identifiers. In such cases it may be
necessary to first persist an object with a pointer setiblL and then, once the pointed-to object

is made persistent and its identifier assigned, set the pointer to the correct value and update the
object in the database.

Persistent object relationships can be divided into two groups: unidirectional and bidirectional.
Each group in turn contains several configurations that vary depending on the cardinality of the
sides of the relationship. All possible unidirectional and bidirectional configurations are discussed
in the following sections.

6.1 Unidirectional Relationships

In unidirectional relationships we are only interested in navigating from object to object in one
direction. Because there is no interest in navigating in the opposite direction, the cardinality of the
other end of the relationship is unimportant. As a result, there are only two possible unidirectional
relationships: to-one and to-many. Each of these relationships is described in the following
sections. For sample code that shows how to work with these relationships, referefa-the
tionship example in thedb-examples package.

Revision 1.8, January 2012 C++ Object Persistence with ODB 75

6.1.1 To-One Relationships

6.1.1 To-One Relationships

An example of a unidirectional to-one relationship is the employee-employer relationship (an
employee has one employer). The following persistent C++ classes model this relationship:

#pragma db object
class employer

{

#pragma db id
std::string name_;

%

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<employer> employer_;

3
The corresponding database tables look like this:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employer VARCHAR (255) NOT NULL REFERENCES employer (name));

6.1.2 To-Many Relationships

An example of a unidirectional to-many relationship is the employee-project relationship (an
employee can be involved in multiple projects). The following persistent C++ classes model this
relationship:

#pragma db object
class project

{

#pragma db id
std::string name_;

%

76 C++ Object Persistence with ODB Revision 1.8, January 2012

6.1.2 To-Many Relationships

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db value_not_null unordered
std::vector<shared_ptr<project> > projects_;

3
The corresponding database tables look like this:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY):;

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
object_id BIGINT UNSIGNED NOT NULL,
value VARCHAR (255) NOT NULL REFERENCES project (name));

To obtain a more canonical database schema, the names of tables and columns above can be
customized using ODB pragmas (Chapter 12, "ODB Pragma Language"). For example:

#pragma db object
class employee

{

#pragma db value_not_null unordered \
id_column("employee_id") value_column("project_name")
std::vector<shared_ptr<project> > projects_;

}1
The resultingemployee_projects table would then look like this:
CREATE TABLE employee_projects (

employee_id BIGINT UNSIGNED NOT NULL,
project_name VARCHAR (255) NOT NULL REFERENCES project (name));

Revision 1.8, January 2012 C++ Object Persistence with ODB 77

6.2 Bidirectional Relationships

6.2 Bidirectional Relationships

In bidirectional relationships we are interested in navigating from object to object in both direc-
tions. As a result, each object class in a relationship contains a pointer to the other object. If smart
pointers are used, then a weak pointer should be used as one of the pointers to avoid ownership
cycles. For example:

class employee;

#pragma db object
class position

{

#pragma db id
unsigned long id_;

weak_ptr<employee> employee_;

%

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<position> position_;

k

Note that when we establish a bidirectional relationship, we have to set both pointers consistently.
One way to make sure that a relationship is always in a consistent state is to provide a single
function that updates both pointers at the same time. For example:

#pragma db object
class position: public enable_shared_from_this<position>

{

void
fill (shared_ptr<employee> e)

{
employee =e¢;
e->positions_ = shared_from_this ();

}

private:

78 C++ Object Persistence with ODB Revision 1.8, January 2012

6.2 Bidirectional Relationships

weak_ptr<employee> employee_;

%

#pragma db object
class employee

{

private:
friend class position;

#pragma db not_null
shared_ptr<position> position_;

%

Above, to model a bidirectional relationship in persistent classes, we used two pointers, one in
each object. While this is a natural representation in C++, it does not translate to a canonical rela-
tional model. Consider the database schema generated for the above two classes:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

While this database schema is valid, it is unconventional. We have a reference from a row in the
position table to a row in themployee table. We also have a reference from this same row

in the employee table back to the row in thgosition table. From the relational point of

view, one of these references is redundant since in SQL we can easily navigate in both directions
using just one of these references.

To eliminate redundant database schema references we can irsestbe pragma[(Sectign
[12.4.11, inverse ") which tells the ODB compiler that a pointer is the inverse side of a bidirec-
tional relationship. Either side of a relationship can be made inverse. For example:

#pragma db object
class position

{

#pragma db inverse(position_)
weak_ptr<employee> employee_;

}1
#pragma db object

class employee

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 79

6.2.1 One-to-One Relationships

#pragma db not_null
shared_ptr<position> position_;

I3
The resulting database schema looks like this:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

As you can see, an inverse member does not have a corresponding column (or table, in case of an
inverse container of pointers) and, from the point of view of database operations, is effectively
read-only. The only way to change a bidirectional relationship with an inverse side is to set its
direct (non-inverse) pointer. Also note that an ordered contginer (Section 5.1, "Ordered |Contain-
lers]) of pointers that is an inverse side of a bidirectional relationship is always treated as
unordered| (Section 12.4.13)ydordered ") because the contents of such a container are implic-

itly built from the direct side of the relationship which does not contain the element order (index).

There are three distinct bidirectional relationships that we will cover in the following sections:
one-to-one, one-to-many, and many-to-many. We will only talk about bidirectional relationships
with inverse sides since they result in canonical database schemas. For sample code that shows
how to work with these relationships, refer to theerse example in theodb-examples

package.

6.2.1 One-to-One Relationships

An example of a bidirectional one-to-one relationship is the presented above employee-position
relationship (an employee fills one position and a position is filled by one employee). The follow-
ing persistent C++ classes model this relationship:

class employee;

#pragma db object
class position

{
#pragma db id
unsigned long id_;
#pragma db inverse(position_)

weak_ptr<employee> employee_;

%

80 C++ Object Persistence with ODB Revision 1.8, January 2012

6.2.2 One-to-Many Relationships

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<position> position_;

3
The corresponding database tables look like this:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

If instead the other side of this relationship is made inverse, then the database tables will change
as follows:

CREATE TABLE position (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.2 One-to-Many Relationships

An example of a bidirectional one-to-many relationship is the employer-employee relationship
(an employer has multiple employees and an employee is employed by one employer). The
following persistent C++ classes model this relationship:

class employee;
#pragma db object

class employer

{

#pragma db id
std::string name_;

#pragma db value_not_null inverse(employer)
std::vector<weak _ptr<employee> > employees__

Revision 1.8, January 2012 C++ Object Persistence with ODB 81

6.2.3 Many-to-Many Relationships

h

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<employer> employer_;

%

The corresponding database tables differ significantly depending on which side of the relation-
ship is made inverse. If thame side €mployer) is inverse as in the code above, then the result-
ing database schema looks like this:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
employer VARCHAR (255) NOT NULL REFERENCES employer (name));

If instead themany side émployee) of this relationship is made inverse, then the database
tables will change as follows:

CREATE TABLE employer (
name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
object_id VARCHAR (255) NOT NULL,
value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.3 Many-to-Many Relationships

An example of a bidirectional many-to-many relationship is the employee-project relationship (an
employee can work on multiple projects and a project can have multiple participating employ-
ees). The following persistent C++ classes model this relationship:

class employee;

#pragma db object
class project

{

82 C++ Object Persistence with ODB Revision 1.8, January 2012

6.2.3 Many-to-Many Relationships

#pragma db id
std::string name_;

#pragma db value_not_null inverse(projects_)
std::vector<weak_ptr<employee> > employees_;

h

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db value_not_null unordered
std::vector<shared_ptr<project> > projects_;

3
The corresponding database tables look like this:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY):;

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
object_id BIGINT UNSIGNED NOT NULL,
value VARCHAR (255) NOT NULL REFERENCES project (name));

If instead the other side of this relationship is made inverse, then the database tables will change
as follows:

CREATE TABLE project (
name VARCHAR (255) NOT NULL PRIMARY KEY):;

CREATE TABLE project_employees (
object_id VARCHAR (255) NOT NULL,
value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

Revision 1.8, January 2012 C++ Object Persistence with ODB 83

6.3 Lazy Pointers

6.3 Lazy Pointers

Consider again the bidirectional, one-to-many employer-employee relationship that was
presented earlier in this chapter:

class employee;

#pragma db object
class employer

{

#pragma db id
std::string name_;

#pragma db value_not_null inverse(employer)
std::vector<weak_ptr<employee> > employees_;

%

#pragma db object
class employee

{

#pragma db id
unsigned long id_;

#pragma db not_null
shared_ptr<employer> employer_;

h
Consider also the following transaction which obtains the employer name given the employee id:

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
name = e->employer_->name_;

t.commit ();

While this transaction looks very simple, it actually does a lot more than what meets the eye and
is necessary. Consider what happens when we loaénipdoyee object: theemployer_

pointer is also automatically loaded which meanseimployer object corresponding to this
employee is also loaded. But tmployer object in turn contains the list of pointers to all the
employees, which are also loaded. A a result, when object relationships are involved, a simple

84 C++ Object Persistence with ODB Revision 1.8, January 2012

6.3 Lazy Pointers

transaction like the above can load many more objects than is necessary.

To overcome this problem ODB offers finer grained control over the relationship loading in the
form of lazy pointers. A lazy pointer does not automatically load the pointed-to object when the
containing object is loaded. Instead, we have to explicitly load the pointed-to object if and when
we need to access it.

The ODB runtime library provides lazy counterparts for all the supported pointers, namely:
odb::lazy_shared_ptr and odb::lazy weak ptr for TR1 shared_ptr and
weak_ptr , odb::lazy auto_ptr for std::auto_ptr , andodb::lazy ptr for raw
pointers. The ODB profile libraries provide lazy pointer implementations for smart pointers from
popular frameworks and librarigs (Part Ill, "Profiles").

While we will discuss the interface of lazy pointers in more detail shortly, the most commonly
used extra function provided by these pointer®as() . This function loads the pointed-to
object if it hasn't already been loaded. After the call to this function, the lazy pointer can be used
in the the same way as its eager counterpartlodd¥) function also returns the eager pointer,

in case you need to pass it around. For a lazy weak pointdoati@ function also locks the
pointer.

The following example shows how we can change our employer-employee relationship to use
lazy pointers. Here we choose to use lazy pointers for both sides of the relationship.

class employee;

#pragma db object
class employer

{

#pragma db value_not_null inverse(employer)
std::vector<lazy weak ptr<employee> > employees_;

g

#pragma db object
class employee

{

#pragma db not_null
lazy_shared_ptr<employer> employer_;

g

And the transaction is changed like this:

Revision 1.8, January 2012 C++ Object Persistence with ODB 85

6.3 Lazy Pointers

unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();

As a general guideline we recommend that you make at least one side of a bidirectional relation-
ship lazy, especially for relationships witlmany side.

A lazy pointer implementation mimics the interface of its eager counterpart which can be used
once the pointer is loaded. It also adds a number of additional functions that are specific to the
lazy loading functionality. Overall, the interface of a lazy pointer follows this general outline:

template <class T>

class lazy ptr

{

public:
1
/I The eager pointer interface.
1

/I Initialization/assignment from an eager pointer.
1
public:
template <class Y> lazy_ptr (const eager_ptr<Y>&);
template <class Y> lazy_ ptr& operator= (const eager_ptr<Y>&);

/I Lazy loading interface.

I

public:

/I NULL loaded()

I

Il true true NULL pointer to transient object
/I false true valid pointer to persistent object
Il true false unloaded pointer to persistent object
/I false false valid pointer to transient object
I

bool loaded () const;

eager_ptr<T> load () const;
/I Unload the pointer. For transient objects this function is

/I equivalent to reset().
1

86 C++ Object Persistence with ODB Revision 1.8, January 2012

6.3 Lazy Pointers

void unload () const;

/I Initialization with a persistent loaded object.

I

template <class Y> lazy_ptr (database&, Y*);

template <class Y> lazy_ptr (database&, const eager_ptr<Y>&);

template <class Y> void reset (database&, Y*);
template <class Y> void reset (database&, const eager_ptr<Y>&);

/I Initialization with a persistent unloaded object.
I
template <class ID> lazy ptr (database&, const ID&);

template <class ID> void reset (database&, const ID&);

/I Query object id and database of a persistent object.
I

template <class O /* =T */>

object _traits<O>::id_type object_id () const;

odb::database& database () const;

h

In a lazy weak pointer interface, tlead() function returns thetrong (shared) eager pointer.
The following transaction demonstrates the use of a lazy weak pointer basedeamptbger
andemployee classes presented earlier.

typedef std::vector<lazy weak ptr<employee> > employees;

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
employees& es (er->employees ());

for (employees:.iterator i (es.begin ()); i = es.end (); ++i)

/' We are only interested in employees with object id less than
// 100.

1

lazy_weak_ptr<employee>& lwp (*i);

if (Iwp.object_id<employee> () < 100)

{
shared_ptr<employee> e (lwp.load ()); // Load and lock.
cout << e->first_ << " " << e->last_ << endl;

}
}

t.commit ();

Revision 1.8, January 2012 C++ Object Persistence with ODB 87

6.3 Lazy Pointers

Notice that inside the for-loop we use a reference to the lazy weak pointer instead of making a
copy. This is not merely to avoid a copy. When a lazy pointer is loaded, all other lazy pointers
that point to the same object do not automatically become loaded (though an attempt to load such
copies will result in them pointing to the same object, provided the same session is still in effect).
By using a reference in the above transaction we make sure that we load the pointer that is
contained in theemployer object. This way, if we later need to re-examine #ngployee

object, the pointer will already be loaded.

As another example, suppose we want to add an employee to Example Inc. The straightforward
implementation of this transaction is presented below:

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ = er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();

Notice here that we didn’t have to update the employer object in the database samopltye
ees_ list of pointers is an inverse side of a bidirectional relationship and is effectively read-only,
from the persistence point of view.

A faster implementation of this transaction, that avoids loading the employer object, relies on the
ability to initialize anunloaded lazy pointer with the database where the object is stored as well
as its identifier:

lazy shared_ptr<employer> er (db, std::string ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ =er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();

88 C++ Object Persistence with ODB Revision 1.8, January 2012

6.4 Using Custom Smart Pointers

6.4 Using Custom Smart Pointers

While the ODB runtime and profile libraries provide support for the majority of widely-used
pointers, it is also easy to add support for a custom smart pointer.

To achieve this you will need to implement fh@nter_traits class template specialization

for your pointer. The first step is to determine the pointer kind since the interface of the
pointer_traits specialization varies depending on the pointer kind. The supported pointer
kinds areraw (raw pointer or equivalent, that is, unmanagedigue (smart pointer that doesn’t
support sharingshared (smart pointer that supports sharing), amdk (weak counterpart of the
shared pointer). Any of these pointers can be lazy, which also affects the interface of the
pointer_traits specialization.

Once you have determined the pointer kind for your smart pointer, use a specialization for one of
the standard pointers found in the common ODB runtime libldygdp) as a base for your
own implementation.

Once the pointer traits specialization is ready, you will need to include it into the ODB compila-
tion process using theodb-epilogue option and into the generated header files with the
--hxx-prologue option. As an example, suppose we havesthart_ptr smart pointer for
which we have the traits specialization implemented instheart-ptr-traits.hxx file.

Then, we can create an ODB compiler options file for this pointer and save it to
smart-ptr.options

Options file for smart_ptr.

#

--odb-epilogue '#include "smart-ptr-traits.hxx"
--hxx-prologue '#include "smart-ptr-traits.hxx™

Now, whenever we compile a header file that useart_ptr , we can specify the following
command line option to make sure it is recognized by the ODB compiler as a smart pointer and
the traits file is included in the generated code:

--options-file smart-ptr.options

It is also possible to implement a lazy counterpart for your smart pointer. The ODB runtime
library provides a class template that encapsulates the object id management and loading func-
tionality that is needed to implement a lazy pointer. All you need to do is wrap it with an interface
that mimics your smart pointer. Using one of the existing lazy pointer implementations (either
from the ODB runtime library or one of the profile libraries) as a base for your implementation is
the easiest way to get started.

Revision 1.8, January 2012 C++ Object Persistence with ODB 89

7 Value Types

7 Value Types

In[Section 3.1, "Concepts and Terminoldgy" we have already discussed the notion of values and
value types as well as the distinction between simple and composite values. This chapter covers
simple and composite value types in more detail.

7.1 Simple Value Types

A simple value type is a fundamental C++ type or a class type that is mapped to a single database
column. For each supported database system the ODB compiler provides a default mapping to
suitable database types for most fundamental C++ types, suth aw float as well as some

class types, such a&$d::string . For more information about the default mapping for each
database system refer[to Part Il, Database Syistems. We can also provide a custom mapping for
these or our own value types using dietype pragmal(Section 12.3.1type).

7.2 Composite Value Types

A composite value type is@dass orstruct type that is mapped to more than one database
column. To declare a composite value type we usdlihalue pragma, for example:

#pragma db value
class basic_name

{

std::string first_;
std::string last_;

3

The complete version of the above code fragment and the other code samples presented in this
section can be found in tktemposite example in thedb-examples package.

A composite value type does not have to define a default constructor, unless it is used as an
element of a container, in which case the default constructor can be made private. If a composite
value type has private or protected non-transient data members or if its default constructor is not
public and the value type is used as an element of a container, thedbtteccess class

should be declared a friend of this value type. For example:

#pragma db value
class basic_name

{
public:
basic_name (const std::string& first, const std::string& last);

90 C++ Object Persistence with ODB Revision 1.8, January 2012

7.2 Composite Value Types

private:
friend class odb::access;

basic_name () {} // Needed for storing basic_name in containers.

std::string first_;
std::string last_;

%

The members of a composite value can be other value types (either simple or composite),
containers|(Chapter 5, "Containgrs"), and pointers to oblects (Chapter 6, "Relatipnships"). Simi-
larly, a composite value type can be used in object members, as an element of a container, and as
a base for another composite value type. In particular, composite value types can be used as
element types in set containgrs (Section 5.2, "Set and Multiset Confainers") and as key types in
map containerq (Section 5.3, "Map and Multimap Contaipers"). A composite value type that is
used as an element of a container cannot contain other containers since containers of containers
are not allowed. The following example illustrates some of the possible use cases:

#pragma db value
class basic_name

{

std::string first_;
std::string last_;

}1
typedef std::vector<basic_name> basic_names;

#pragma db value
class name_extras

{

std::string nickname_;
basic_names aliases_;

%

#pragma db value
class name: public basic_name

{

std::string title_;
name_extras extras_;

%

#pragma db object
class person

Revision 1.8, January 2012 C++ Object Persistence with ODB 91

7.2 Composite Value Types

name name_;

%

A composite value type can also be defined as an instantiation of a C++ class template, for
example:

template <typename T>
struct point

{
TX;
Ty;
Tz
%

typedef point<int> int_point;
#pragma db value(int_point)

#pragma db object
class object

{

int_point center_;

%

Note that the database support code for such a composite value type is generated when compiling
the header containing tlt value pragma and not the header containing the template defini-
tion or thetypedef name. This allows us to use templates defined in other files, such as
std::pair defined in thautility standard header file:

#include <utility> // std::pair

typedef std::pair<std::string, std::string> phone_numbers;
#pragma db value(phone_numbers)

#pragma db object
class person

{

phone_numbers phone_;

g

We can also use data members from composite value types in database [queries (Chapter 4,
['Querying the Databage"). For each composite value in a persistent class, the query class defines
a nested member that contains members corresponding to the data members in the value type. We

92 C++ Object Persistence with ODB Revision 1.8, January 2012

7.2.1 Composite Value Column and Table Names

can then use the member access syntax (.) to refer to data members in value types. For example,
the query class for theerson object presented above contains tlaene member (its name is
derived from thename_ data member) which in turn contains thdras member (its name is

derived from thename::extras_ data member of the composite value type). This process
continues recursively for nested composite value types and, as a result, we can use the
qguery::name.extras.nickname expression while querying the database forpiieson

objects. For example:

typedef odb::query<person> query;
typedef odb::result<person> result;

transaction t (db.begin ());

result r (db.query<person> (
query::name.extras.nickname == "Squeaky"));

t.commit ();

7.2.1 Composite Value Column and Table Names

Customizing a column name for a data member of a simple value type is straightforward: we
simply specify the desired name with tfle column pragma((Section 12.4.7¢célumn). For
composite value types things are slightly more complex since they are mapped to multiple
columns. Consider the following example:

#pragma db value
class name

{

std::string first_;
std::string last_;

g

#pragma db object
class person

{

#pragma db id auto
unsigned long id_;

name name_;

g

Revision 1.8, January 2012 C++ Object Persistence with ODB 93

7.2.1 Composite Value Column and Table Names

The column names for test andlast. members are constructed by using the sanitized
name of thgerson::name_ member as a prefix and the names of the members in the value
type first_ andlast_) as suffixes. As a result, the database schema for the above classes
will look like this:

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
name_first TEXT NOT NULL,
name_last TEXT NOT NULL);

We can customize both the prefix and the suffix usingdtheolumn pragma as shown in the
following example:

#pragma db value
class name

{

#pragma db column("first_name")
std::string first_;

#pragma db column("last_name")
std::string last_;

k

#pragma db object
class person

{

#pragma db column(“person_")
name name_;

}1
The database schema changes as follows:
CREATE TABLE person (

id BIGINT UNSIGNED NOT NULL PRIMARY KEY,

person_first name TEXT NOT NULL,
person_last name TEXT NOT NULL);

We can also make the column prefix empty, for example:

94 C++ Object Persistence with ODB Revision 1.8, January 2012

7.2.1 Composite Value Column and Table Names

#pragma db object
class person

{

#pragma db column("")
name name_;

}1
This will result in the following schema:

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
first name TEXT NOT NULL,
last name TEXT NOT NULL);

The same principle applies when a composite value type is used as an element of a container,
except that instead oflb column , either the db value_column (Section 12.4.26)

['value column ") ordb key column (Section 12.4.25Key column ") pragmas are used

to specify the column prefix.

When a composite value type contains a container, an extra table is used to store its elements
(Chapter 5, "Containels"). The names of such tables are constructed in a way similar to the
column names, except that by default both the object name and the member name are used as a
prefix. For example:

#pragma db value
class name

{

std::string first_;
std::string last_;
std::vector<std::string> nicknames_;

g

#pragma db object
class person

{

name name_;

g

The corresponding database schema will look like this:

Revision 1.8, January 2012 C++ Object Persistence with ODB 95

7.3 Pointers and NULL Value Semantics

CREATE TABLE person_name_nicknames (
object_id BIGINT UNSIGNED NOT NULL,
index BIGINT UNSIGNED NOT NULL,
value TEXT NOT NULL)

CREATE TABLE person (
id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
name_first TEXT NOT NULL,
name_last TEXT NOT NULL);

To customize the container table name we can usellihable pragma|(Section 12.4.14,

"table "), for example:

#pragma db value
class name

{

#pragma db table("nickname")
std::vector<std::string> nicknames_;

%

#pragma db object
class person

{

#pragma db table("person_")
name name_;

}1
This will result in the following schema changes:

CREATE TABLE person_nickname (
object_id BIGINT UNSIGNED NOT NULL,
index BIGINT UNSIGNED NOT NULL,
value TEXT NOT NULL)

Similar to columns, we can make the table prefix empty.

7.3 Pointers andNULL Value Semantics

Relational database systems have a notion of the spédldl value that is used to indicate the
absence of a valid value in a column. While by default ODB maps values to columns that do not
allow NULL values, it is possible to change that with tenull pragma|(Section 12.4.4,

['null /not null).

96 C++ Object Persistence with ODB Revision 1.8, January 2012

7.3 Pointers and NULL Value Semantics

To properly support thHULL semantics, the C++ value type must have a notiorN\Wwld. value

or a similar special state concept. Most basic C++ types, suoh asr std::string , do not

have this notion and therefore cannot be used directlNidrl-enabled data members (in the
case of aNULL value being loaded from the database, such data members will be default-initial-
ized).

To allow the easy conversion of value types that do not suppdsiithe semantics into the ones

that do, ODB provides thedb::nullable class template. It allows us to wrap an existing
C++ type into a container-like class that can eitheNbkL or contain a value of the wrapped

type. ODB also automatically enables tHeULL values for data members of the

odb::nullable type. For example:

#include <odb/nullable.hxx>

#pragma db object
class person

{
std::string first_; /I TEXT NOT NULL
odb::nullable<std::string> middle_; // TEXT NULL
std::string last_; /I TEXT NOT NULL
h
The odb::nullable class template is defined in tk@db/nullable.hxx> header file

and has the following interface:

namespace odb
{
template <typename T>
class nullable
{
public:
typedef T value_type;

nullable ();

nullable (const T&);

nullable (const nullable&);

template <typename Y> explicit nullable (const nullable<Y>&);

nullable& operator= (const T&);

nullable& operator= (const nullable&);

template <typename Y> nullable& operator= (const nullable<Y>&);
void swap (nullable&);

/I Accessor interface.

i
bool null () const;

Revision 1.8, January 2012 C++ Object Persistence with ODB 97

7.3 Pointers and NULL Value Semantics

T& get ();
const T& get () const;

/I Pointer interface.
1
operator bool_convertible () const;

T operator-> ();
const T* operator-> () const;

T& operator* ();
const T& operator* () const;

/l Reset to the NULL state.
1
void reset ();
h
}

The following example shows how we can use this interface:

nullable<string> ns;

/I Using the accessor interface.
1
if (ns.null ())
{
s = "abc",
}
else
{
string s (ns.get ());
ns.reset ();

}

/I The same using the pointer interface.

I

if (ns)

{
s = "abc",

}

else

{
string s (*ns);
ns.reset ();

}

98 C++ Object Persistence with ODB

Revision 1.8, January 2012

7.3 Pointers and NULL Value Semantics

Theodb::nullable class template requires the wrapped type to have public default and copy
constructors as well as the copy assignment operator. Note also thadbtheullable
implementation is not the most efficient in that it always contains a fully constructed value of the
wrapped type. This is normally not a concern for simple types such as the C++ fundamental types
or std::string . However, it may become an issue for more complex types. In such cases you
may want to consider using a more efficient implementation adgtienal value concept such as
theoptional class template from Boost (Section 19.3, "Optional Libfary").

Another common C++ representation of a value that caNWiel is a pointer. ODB will auto-
matically handle data members that are pointers to values, however, it will not automatically
enableNULL values for such data members, as is the casadfmrnullable . Instead, if the
NULL value is desired, we will need to enable it explicitly usingdbewll pragma. For
example:

#pragma db object
class person

{
std::string first_;

#pragma db null
std::auto_ptr<std::string> middle_;

std::string last_;

3
The ODB compiler includes built-in support for usingtd::auto_ptr and
std::trl::shared_ptr as pointers to values. Plus, ODB profile libraries, that are available

for commonly used frameworks and libraries (such as Boost and Qt), provide support for smart
pointers found in these frameworks and librafies (Part Ill, "Profiles").

Currently, ODB supports thBIULL semantics only for simple values. In future versions this
support will be extended to composite values and containers. With this limitation in mind, we can
still use smart pointers in data members of composite value and container types. The only restric-
tion is that these pointers must notNldLL For example:

#pragma db value
struct name

{
std::string first_;
std::string last_;

%

#pragma db object
class person

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 99

7.3 Pointers and NULL Value Semantics

std::auto_ptr<name> name_;
std::auto_ptr<std::vector<name> > aliases_;

%

100 C++ Object Persistence with ODB Revision 1.8, January 2012

8 Inheritance

8 Inheritance

In C++ inheritance can be used to achieve two different goals. We can employ inheritance to
reuse common data and functionality in multiple classes. For example:

class person

{

public:
const std::string&
first () const;

const std::string&
last () const;

private:
std::string first_;
std::string last_;

}1

class employee: public person

{

3

class contractor: public person

{

3

In the above example both teenployee andcontractor classes inherit thérst_ and
last_ data members as well as thrst() andlast() accessors from thgerson base
class.

A common trait of this inheritance style, referred toase inheritance from now on, is the lack
of virtual functions and a virtual destructor in the base class. Also with this style the application
code is normally written in terms of derived classes instead of a base.

The second way to utilize inheritance in C++ is to provide polymorphic behavior through a
common interface. In this case the base class defines a number of virtual functions and, normally,
a virtual destructor while the derived classes provide specific implementations of these virtual
functions. For example:

class person

{
public:
enum employment_status

{

unemployed,

Revision 1.8, January 2012 C++ Object Persistence with ODB 101

8 Inheritance

temporary,
permanent,
self_employed

I3

virtual employment_status
employment () const = 0;

virtual
~person ();

%

class employee: public person

{

public:
virtual employment_status
employment () const

{

return temporary_ ? temporary : permanent;

}

private:
bool temporary_;

%

class contractor: public person

{

public:
virtual employment_status
employment () const

{

return self_employed,;

}
h

With this inheritance style, which we will cgdblymorphism inheritance, the application code
normally works with derived classes via the base class interface. Note also that it is very common
to mix both styles in the same hierarchy. For example, the above two code fragments can be
combined so that theerson base class provides the common data members and functions as
well as defines the polymorphic interface.

The following sections describe the available strategies for mapping reuse and polymorphism
inheritance styles to a relational data model. Note also that the distinction between the two styles
is conceptual rather than formal. For example, it is possible to treat a class hierarchy that defines
virtual functions as a case of reuse inheritance if this results in the desired database mapping and
semantics.

102 C++ Object Persistence with ODB Revision 1.8, January 2012

8.1 Reuse Inheritance

Generally, classes that employ reuse inheritance are mapped to completely independent entities in
the database. They use different object id spaces and should always be passed to and returned
from the database operations as pointers or references to derived types. In other words, from the
persistence point of view, such classes behave as if the data members from the base classes were
copied verbatim into the derived ones.

In contrast, classes that employ polymorphism inheritance share the object id space and can be
passed to and returned from the database operambyreorphically as pointers or references to
the base class.

For both inheritance styles it is sometimes desirable to prevent instances of a base class from
being stored in the database. To achieve this a persistent class can be declared abstract using the
db abstract pragma [(Section 12.1.3abstract "). Note that aC++-abstract class, or a

class that has one or more pure virtual functions and therefore cannot be instantiated, is also
database-abstract. However, a database-abstract class is not necessarily C++-abstract. The ODB
compiler automatically treats C++-abstract classes as database-abstract.

8.1 Reuse Inheritance

Each non-abstract class from the reuse inheritance hierarchy is mapped to a separate database
table that contains all its data members, including those inherited from base classes. An abstract
persistent class does not have to define an object id, nor a default constructor, and it does not
have a corresponding database table. An abstract class cannot be a pointed-to object in a relation-
ship. Multiple inheritance is supported as long as each base class is only inherited once. The
following example shows a persistent class hierarchy employing reuse inheritance:

/I Abstract person class. Note that it does not declare the
/l object id.

1

#pragma db object abstract

class person

{

std::string first_;
std::string last_;

h

/I Abstract employee class. It derives from the person class and
/I declares the object id for all the concrete employee types.

1

#pragma db object abstract

class employee: public person

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 103

8.1 Reuse Inheritance

#pragma db id auto
unsigned long id_;

%

/I Concrete permanent_employee class. Note that it doesn’t define
/[any data members of its own.

I

#pragma db object

class permanent_employee: public employee

{
=

/I Concrete temporary_employee class. It adds the employment
/[duration in months.

I

#pragma db object

class temporary_employee: public employee

{

unsigned long duration_;

%

/I Concrete contractor class. It derives from the person class

/I (and not employee; an independent contractor is not considered
/I an employee). We use the contractor’s external email address
/I as the object id.

I

#pragma db object

class contractor: public person

{

#pragma db id
std::string email_;

%

The sample database schema for this hierarchy is shown below.

CREATE TABLE permanent_employee (
first TEXT NOT NULL,
last TEXT NOT NULL,
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
first TEXT NOT NULL,
last TEXT NOT NULL,
id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
duration BIGINT UNSIGNED NOT NULL);

104 C++ Object Persistence with ODB

Revision 1.8, January 2012

8.2 Polymorphism Inheritance

CREATE TABLE contractor (
first TEXT NOT NULL,
last TEXT NOT NULL,
email VARCHAR (255) NOT NULL PRIMARY KEY);

The complete version of the code presented in this section is available inhéngance
example in the@db-examples package.

8.2 Polymorphism Inheritance

Polymorphism inheritance mapping is not yet implemented. Future versions of ODB will add
support for this functionality.

Revision 1.8, January 2012 C++ Object Persistence with ODB 105

9 Views

9 Views

An ODB view is a C+4class orstruct type that embodies a light-weight, read-only projec-
tion of one or more persistent objects or database tables or the result of a native SQL query
execution.

Some of the common applications of views include loading a subset of data members from
objects or columns from database tables, executing and handling results of arbitrary SQL queries,
including aggregate queries, as well as joining multiple objects and/or database tables using
object relationships or custom join conditions.

Many relational databases also define the concept of views. Note, however, that ODB views are
not mapped to database views. Rather, by default, an ODB view is mapped to &ESELT
qguery. However, if desired, it is easy to create an ODB view that is based on a database view.

Usually, views are defined in terms of other persistent entities, such as persistent objects,
database tables, sequences, etc. Therefore, before we can examine our first view, we need to
define a few persistent objects and a database table. We will use this model in examples through-
out this chapter. Here we assume that you are familiar with ODB object relationship support
(Chapter 6, "Relationshigs").

#pragma db object
class country

{

#pragma db id
std::string code_; // ISO 2-letter country code.

std::string name_;

I3

#pragma db object
class employer

{
#pragma db id
unsigned long id_;

std::string name_;

I3

#pragma db object
class employee

{

106 C++ Object Persistence with ODB Revision 1.8, January 2012

9 Views

#pragma db id
unsigned long id_;

std::string first_;
std::string last_;

unsigned short age_;

shared_ptr<country> residence_;
shared_ptr<country> nationality_;

shared_ptr<employer> employed by ;

h

Besides these objects, we also have the legagyloyee extra table that is not mapped to
any persistent class. It has the following definition:

CREATE TABLE employee_extra(
employee_id INTEGER NOT NULL,
vacation_days INTEGER NOT NULL,
previous_employer_id INTEGER)

The above persistent objects and database table as well as many of the views shown in this
chapter are based on thiew example which can be found in tbdb-examples package of
the ODB distribution.

To declare a view we use tbb view pragma, for example:

#pragma db view object(employee)
struct employee_name

{
std::string first;
std::string last;

g

The above example shows one of the simplest views that we can create. It has a single associated
object émployee) and its purpose is to extract the employee’s first and last names without
loading any other data, such as the referesoedtry andemployer objects.

Views use the same query facilify (Chapter 4, "Querying the Dat@abase") as persistent objects.
Because support for queries is optional and views cannot be used without this support, you need
to compile any header that defines a view with-tgenerate-query ODB compiler option.

To query the database for a view we usedht@base::query() function in exactly the
same way as we would use it to query the database for an object. For example, the following code
fragment shows how we can find the names of all the employees that are younger than 31:

Revision 1.8, January 2012 C++ Object Persistence with ODB 107

9.1 Object Views

typedef odb::query<employee_name> query;
typedef odb::result<employee _name> result;

transaction t (db.begin ());
result r (db.query<employee_name> (query::age < 31));

for (result::iterator i (r.begin ()); i !'=r.end (); ++i)

{

const employee_name& en (*i);
cout << en.first << " " << en.last << endl;

}

t.commit ();

A view can be defined as a projection of one or more objects, one or more tables, a combination
of objects and tables, or it can be the result of a custom SQL query. The following sections
discuss each of these kinds of view in more detail.

9.1 Object Views

To associate one or more objects with a view we usedhhebject pragma|(Section 12.2.11,
['object "). We have already seen a simple, single-object view in the introduction to this
chapter. To associate the second and subsequent objects we redbatlifeet pragma for
each additional object, for example:

#pragma db view object(employee) object(employer)
struct employee_employer

{

std::string first;
std::string last;
std::string name;

3
The complete syntax of tith object pragma is shown below:
object(name[= alias][: join-condition])

The name part is a potentially qualified persistent class name that has been defined previously.
The optionaklias part gives this object an alias. If provided, the alias is used in several contexts
instead of the object’s unqualified name. We will discuss aliases further as we cover each of these
contexts below. The optiongdin-condition part provides the criteria which should be used to as-
sociate this object with any of the previously associated objects or, as we wil[see in Se¢tion 9.3,
['Mixed Views'], tables. Note that while the first associated object can have an alias, it cannot
have a join condition.

108 C++ Object Persistence with ODB Revision 1.8, January 2012

9.1 Object Views

For each subsequent associated object the ODB compiler needs a join condition and there are
several ways to specify it. The easiest way is to omit it altogether and let the ODB compiler try to
come up with a join condition automatically. To do this the ODB compiler will examine each
previously associated object for object relationstiips (Chapter 6, "Relatiopships") that may exist
between these objects and the object being associated. If such a relationship exists and is unam-
biguous, that is there is only one such relationship, then the ODB compiler will automatically use

it to come up with the join condition for this object. This is exactly what happens in the previous
example: there is a single relationshgmployee::employed_by) between themployee
andemployer objects.

On the other hand, consider this view:

#pragma db view object(employee) object(country)
struct employee_residence

{

std::string first;
std::string last;
std::string name;

%

While there is a relationship betweeonuntry andemployee , it is ambiguous. It can be
employee::residence_ (which is what we want) or it can leenployee::national-

ity (which we don’t want). As result, when compiling the above view, the ODB compiler will
issue an error indicating an ambiguous object relationship. To resolve this ambiguity, we can
explicitly specify the object relationship that should be used to create the join condition as the
name of the corresponding data member. Here is how we can &xjbleyee residence

view:

#pragma db view object(employee) object(country: employee:.residence)
struct employee_residence

{

std::string first;
std::string last;
std::string name;

g

It is possible to associate the same object with a single view more than once using different join
conditions. However, in this case, we have to use aliases to assign different names for each asso-
ciation. For example:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country

{
=

Revision 1.8, January 2012 C++ Object Persistence with ODB 109

9.1 Object Views

Note that correctly defining data members in this view requires the use of a mechanism that we
haven’t yet covered. We will see how to do this shortly.

If we assign an alias to an object and refer to a data member of this object in one of the join
conditions, we have to use the unqualified alias name instead of the potentially qualified object
name. For example:

#pragma db view object(employee = ee) object(country: ee::residence)
struct employee_residence

{
=

The last way to specify a join condition is to provide a custom query expression. This method is
primarily useful if you would like to associate an object using a condition that does not involve an
object relationship. Consider, for example, a modigetployee object from the beginning of

the chapter with an added country of birth member. For one reason or another we have decided
not to use a relationship to theuntry object, as we have done with residence and nationality.

#pragma db object
class employee

{

std::string birth_place_; // Country name.

%

If we now want to create a view that returns the birth country code for an employee, then we have
to use a custom join condition when associatingcthetry object. For example:

#pragma db view object(employee) \
object(country: employee::birth_place_ == country::name_)
struct employee_birth_code

{

std::string first;
std::string last;
std::string code;

%

The syntax of the query expression in custom join conditions is the same as in the query facility
used to query the database for objgcts (Chapter 4, "Querying the Ddtabase") except that for query
members, instead of usingdb::query<object>::member names, we refer directly to

object members.

Looking at the views we have defined so far, you may be wondering how the ODB compiler
knows which view data members correspond to which object data members. While the names are
similar, they are not exactly the same, for examplaployee name::first and

110 C++ Object Persistence with ODB Revision 1.8, January 2012

9.1 Object Views

employee::first_

As with join conditions, when it comes to associating data members, the ODB compiler tries to
do this automatically. It first searches all the associated objects for an exact name match. If no
match is found, then the ODB compiler compares the so-called public names. A public name of a
member is obtained by removing the common member name decorations, such as leading and
trailing underscores, tha_ prefix, etc. In both of these searches the ODB compiler also makes
sure that the types of the two members are the same or compatible.

If one of the above searches returned a match and it is unambiguous, that is there is only one
match, then the ODB compiler will automatically associate the two members. On the other hand,
if no match is found or the match is ambiguous, the ODB compiler will issue an error. To asso-
ciate two differently-named members or to resolve an ambiguity, we can explicitly specify the
member association using tle column pragma|(Section 12.4.7célumn). For example:

#pragma db view object(employee) object(employer)
struct employee_employer
{

std::string first;

std::string last;

#pragma db column(employer::name_)
std::string employer_name;

g

If an object data member specifies the SQL type withdihéype pragma|(Section 12.4.8,
"type "), then this type is also used for the associated view data members.

Note also that similar to join conditions, if we assign an alias to an object and refer to a data
member of this object in one of tlk column pragmas, then we have to use the unqualified
alias name instead of the potentially qualified object name. For example:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country
{
std::string first;
std::string last;

#pragma db column(res_country::name_)
std::string res_country_name;

#pragma db column(nat_country::name_)
std::string nat_country_name;

g

Revision 1.8, January 2012 C++ Object Persistence with ODB 111

9.1 Object Views

Besides specifying just the object member, we can also speciyedression in the

db column pragma. A +-expression consists of string literals and object member references
connected using the operator. It is primarily useful for defining aggregate views based on SQL
aggregate functions, for example:

#pragma db view object(employee)
struct employee_count

{
#pragma db column(“"count(" + employee::id_ +")")
std::size_t count;

g

When querying the database for a view, we may want to provide additional query criteria based
on the objects associated with this view. To support this a view defines query members for all the
associated objects which allows us to refer to such objects’ members using the
odb::query<view>::member expressions. This is similar to how we can refer to object
members using theodb::query<object>::member expressions when querying the
database for an object. For example:

typedef odb::result<employee_count> result;
typedef odb::query<employee_count> query;

transaction t (db.begin ());

/I Find the number of employees with the Doe last hame.
I
result r (db.query<employee_count> (query::last == "Doe"));

/I Result of this aggregate query contains only one element.
I
cout << r.begin ()->count << endl;

t.commit ();

In the above query we used the last name data member from the assoojpi®ee object to
only count employees with the specific name.

When a view has only one associated object, the query members corresponding to this object are
defined directly in theodb::query<view> scope. For instance, in the above example, we
referred to the last name membelodb::query<employee_count>::last . However, if

a view has multiple associated objects, then query members corresponding to each such object are
defined in a nested scope named after the object. As an example, consider the
employee_employer view again:

112 C++ Object Persistence with ODB Revision 1.8, January 2012

9.1 Object Views

#pragma db view object(employee) object(employer)
struct employee_employer

{
std::string first;
std::string last;

#pragma db column(employer::name_)
std::string employer_name;

%

Now, to refer to the last name data member from éngployee object we use the
odb::query<...>::employee::last expression. Similarly, to refer to the employer
name, we use thedb::query<...>::employer::name expression. For example:

typedef odb::result<employee_employer> result;
typedef odb::query<employee employer> query;

transaction t (db.begin ());
result r (db.query<employee _employer> (
query::employee::last == "Doe" &&

query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i I=r.end (); ++i)
cout << i->first << " " << j->last << " " << i->employer_name << endl;

t.commit ();

If we assign an alias to an object, then this alias is used to name the query members scope instead
of the object name. As an example, consideethployee_country view again:

#pragma db view object(employee) \
object(country = res_country: employee::residence)\
object(country = nat_country: employee::nationality)
struct employee_country
{
k

And a query which returns all the employees that have the same country of residence and nation-
ality:

typedef odb::query<employee_country> query;
typedef odb::result<employee_country> result;

transaction t (db.begin ());

result r (db.query<employee_country> (
guery::res_country::name == query::nat_country::name));

Revision 1.8, January 2012 C++ Object Persistence with ODB 113

9.2 Table Views

for (result::iterator i (r.begin ()); i I=r.end (); ++i)
cout << i->first << " " << j->last << " " << j->res_country_name << endl;

t.commit ();

Note also that unlike object query members, view query members do no support referencing
members in related objects. For example, the following query is invalid:

typedef odb::query<employee_name> query;
typedef odb::result<employee name> result;

transaction t (db.begin ());

result r (db.query<employee _name> (
query::employed_by->name == "Simple Tech Ltd"));

t.commit ();

To get this behavior, we would instead need to associatentpoyer object with this view
and then use thguery::employer::name expression instead of
query::employed_by->name

As we have discussed above, if specified, an object alias is used instead of the object name in the
join condition, data member references indbecolumn pragma, as well as to name the query
members scope. The object alias is also used as a table name alias in the urSiELEGT
statement generated by the ODB compiler. Normally, you would not use the table alias directly
with object views. However, if for some reason you need to refer to a table column directly, for
example, as part of a native query expression, and you need to qualify the column with the table,
then you will need to use the table alias instead.

9.2 Table Views

A table view is similar to an object view except that it is based on one or more database tables
instead of persistent objects. Table views are primarily useful when dealing with ad-hoc tables
that are not mapped to persistent classes.

To associate one or more tables with a view we usallthable pragma|(Section 12.2.P,
['table 7). To associate the second and subsequent tables we repehttdide pragma for
each additional table. For example, the following view is based omripoyee_extra
legacy table we have defined at the beginning of the chapter.

114 C++ Object Persistence with ODB Revision 1.8, January 2012

9.2 Table Views

#pragma db view table("employee_extra")
struct employee_vacation

{
#pragma db column("employee_id") type("INTEGER")
unsigned long employee id;

#pragma db column("vacation_days") type("INTEGER")
unsigned short vacation_days;

%

Besides the table name in te table = pragma we also have to specify the column name for
each view data member. Note that unlike for object views, the ODB compiler does not try to
automatically come up with column names for table views. Furthermore, we cannot use refer-
ences to object members either, since there are no associated objects in table views. Instead, the
actual column name or column expression must be specified as a string literal. The column name
can also be qualified with a table name either in'thigle.column” form or, if either a table

or a column name contains a period, in'tiadle"."column” form. The following example
illustrates the use of a column expression:

#pragma db view table("employee_extra")
struct employee_max_vacation

{
#pragma db column("max(vacation_days)") type("INTEGER")

unsigned short max_vacation_days;

%

Both the asociated table names and the column names can be qualified with a database schema,
for example:

#pragma db view table("hr.employee_extra")
struct employee_max_vacation

{
#pragma db column("hr.employee_extra.vacation_days") type("INTEGER")

unsigned short vacation_days;

%

For more information on database schemas and the format of the qualified names|_refer {o Section
[12.1.8, schema}

Note also that in the above examples we specified the SQL type for each of the columns to make
sure that the ODB compiler has knowledge of the actual types as specified in the database
schema. This is required to obtain correct and optimal generated code.

The complete syntax of thdb table pragma is similar to thdb object pragma and is
shown below:

Revision 1.8, January 2012 C++ Object Persistence with ODB 115

9.2 Table Views

table(* name" [= "alias"][: join-condition])

The name part is a database table name. The optiahiak part gives this table an alias. If
provided, the alias must be used instead of the table whenever a reference to a table is used.
Contexts where such a reference may be needed include the join condition (discussed below),
column names, and query expressions. The optipnalcondition part provides the criteria

which should be used to associate this table with any of the previously associated tables or, as we
will see in|Section 9.3, "Mixed Views", objects. Note that while the first associated table can
have an alias, it cannot have a join condition.

Similar to object views, for each subsequent associated table the ODB compiler needs a join
condition. However, unlike for object views, for table views the ODB compiler does not try to
come up with one automatically. Furthermore, we cannot use references to object members corre-
sponding to object relationships either, since there are no associated objects in table views.
Instead, for each subsequent associated table, a join condition must be specified as a custom
qguery expression. While the syntax of the query expression is the same as in the query facility
used to query the database for objgcts (Chapter 4, "Querying the Ddtabase"), a join condition for
a table is normally specified as a single string literal containing a native SQL query expression.

As an example of a multi-table view, consider émeployee health table that we define in
addition toemployee_extra

CREATE TABLE employee_health(
employee_id INTEGER NOT NULL,
sick_leave days INTEGER NOT NULL)

Given these two tables we can now define a view that returns both the vacation and sick leave
information for each employee:

#pragma db view table("employee_extra" = "extra") \
table("employee_health" = "health": \
"extra.employee_id = health.employee_id")
struct employee_leave
{
#pragma db column("extra.employee_id") type("INTEGER")
unsigned long employee id;

#pragma db column("vacation_days") type("INTEGER")
unsigned short vacation_days;

#pragma db column("sick_leave_days") type("INTEGER")
unsigned short sick_leave_days;

116 C++ Object Persistence with ODB Revision 1.8, January 2012

9.3 Mixed Views

Querying the database for a table view is the same as for an object view except that we can only
use native query expressions. For example:

typedef odb::query<employee_leave> query;
typedef odb::result<employee_leave> result;

transaction t (db.begin ());

unsigned short v_min = ...
unsigned short |_min = ...

result r (db.query<employee_leave> (
"vacation_days >" + query::_val(v_min) + "AND"
"sick_leave_days > " + query::_val(l_min)));

t.commit ();

9.3 Mixed Views

A mixed view has both associated objects and tables. As a first example of a mixed view, let us
improve employee_vacation from the previous section to return the employee’s first and
last names instead of the employee id. To achieve this we have to associate éotpldlyee

object and themployee extra table with the view:

#pragma db view object(employee) \
table("employee_extra" = "extra": "extra.employee_id =" + employee::id_)
struct employee_vacation

{
std::string first;
std::string last;

#pragma db column(“extra.vacation_days") type("INTEGER")
unsigned short vacation_days;

h

When querying the database for a mixed view, we can use query members for the parts of the
guery expression that involves object members but have to fall back to using the native syntax for
the parts that involve table columns. For example:

typedef odb::query<employee_vacation> query;
typedef odb::result<employee_vacation> result;

transaction t (db.begin ());

result r (db.query<employee_vacation> (
(query::last == "Doe") + "AND extra.vacation_days <> 0"));

Revision 1.8, January 2012 C++ Object Persistence with ODB 117

9.4 View Query Conditions

for (result::iterator i (r.begin ()); i I=r.end (); ++i)
cout << i->first << " " << j->last << " " << j->vacation_days << endl;

t.commit ();

As another example, consider a more advanced view that associates two objects via a legacy
table. This view allows us to find the previous employer name for each employee:

#pragma db view object(employee) \
table("employee_extra" = "extra": "extra.employee_id =" + employee::id)\
object(employer: "extra.previous_employer_id =" + employer::id_)
struct employee_prev_employer
{
std::string first;
std::string last;

/I'If previous_employer_id is NULL, then the name will be NULL as well.
/' We use the odb::nullable wrapper to handle this.

I

#pragma db column(employer::name_)

odb::nullable<std::string> prev_employer_name;

h

9.4 View Query Conditions

Object, table, and mixed views can also specify an optional query condition that should be used
whenever the database is queried for this view. To specify a query condition we use the
db query pragmal(Section 12.2.ydery ").

As an example, consider a view that returns some information about all the employees that are
over a predefined retirement age. One way to implement this would be to define a standard object
view as we have done in the previous sections and then use a query like this:

result r (db.query<employee_retirement> (query::age > 50));

The problem with the above approach is that we have to keep repeatiqgetiygeage >
50 expression every time we execute the query, even though this expression always stays the
same. View query conditions allow us to solve this problem. For example:

#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement

{

std::string first;

std::string last;

unsigned short age;

h

118 C++ Object Persistence with ODB Revision 1.8, January 2012

9.4 View Query Conditions

With this improvement we can rewrite our query like this:

result r (db.query<employee_retirement> ());

But what if we may also need to restrict the result set based on some varying criteria, such as the
employee’s last name? Or, in other words, we may need to combine a constant query expression
specified in thedb query pragma with the varying expression specified at the query execution
time. To allow this, thelb query pragma syntax supports the use of a spé®)al placeholder

that indicates the position in the constant query expression where the runtime expression should
be inserted. For example:

#pragma db view object(employee) query(employee::age > 50 && (?))
struct employee_retirement

{

std::string first;
std::string last;
unsigned short name;

}1
With this change we can now use additional query criteria in our view:

result r (db.query<employee_retirement> (query::last == "Doe"));

The syntax of the expression in a query condition is the same as in the query facility used to

query the database for objedts (Chapter 4, "Querying the Database") except for two differences.
Firstly, for query members, instead of usiodb::query<object>::member names, we

refer directly to object members, using the object alias instead of the object name if an alias was
assigned. Secondly, query conditions support the sg@g¢iaplaceholder which can be used both

in the C++-integrated query expressions as was shown above and in native SQL expressions
specified as string literals. The following view is an example of the latter case:

#pragma db view table("employee_extra™) \
query("vacation_days <> 0 AND (?)")
struct employee_vacation

{
=

Another common use case for query conditions are views wit@RI2ER BYor GROUP BY

clause. Such clauses are normally present in the same form in every query involving such views.
As an example, consider an aggregate view which calculate the minimum and maximum ages of
employees for each employer:

#pragma db view object(employee) object(employer) \
query ((?) + "GROUP BY" + employer::name_)
struct employer_age

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 119

9.5 Native Views

#pragma db column(employer::name_)
std::string employer_name;

#pragma db column("min(" + employee::age_ +")")
unsigned short min_age;

#pragma db column("max(" + employee::age_ +")")
unsigned short max_age;

h

9.5 Native Views

The last kind of view supported by ODB is a native view. Native views are a low-level mecha-
nism for capturing results of native SQL queries. Native views don’t have associated tables or
objects. Instead, we use ttlle query pragma to specify the native SQL query, which must at a
minimum include the select-list and, if applicable, the from-list. For example, here is how we can
re-implement themployee_vacation table view from Section 9.2 above as a native view:

#pragma db view query("SELECT employee_id, vacation_days "\
"FROM employee_extra")
struct employee_vacation

{
#pragma db type("INTEGER")

unsigned long employee _id;

#pragma db type("INTEGER")
unsigned short vacation_days;

h

In native views the columns in the query select-list are associated with the view data members in
the order specified. That is, the first column is stored in the first member, the second column —

in the second member, and so on. The ODB compiler does not perform any error checking in this
association. As a result you must make sure that the number and order of columns in the query
select-list match the number and order of data members in the view. This is also the reason why
we are not required to provide the column name for each data member in native views, as is the
case for object and table views.

Note also that while it is always possible to implement a table view as a native view, the table

views must be preferred since they are safer. In a native view, if you add, remove, or rearrange
data members without updating the column list in the query, or vice versa, at best, this will result

in a runtime error. In contrast, in a table view such changes will result in the query being auto-

matically updated.

Similar to object and table views, the query specified for a native view can contain the special
(?) placeholder which is replaced with the query expression specified at the query execution
time. If the native query does not contain a placeholder, as in the example above, then any query

120 C++ Object Persistence with ODB Revision 1.8, January 2012

9.5 Native Views

expression specified at the query execution time is appended to the query text along with the
WHERKeyword, if required. The following example shows the usage of the placeholder:

#pragma db view query("SELECT employee _id, vacation_days "\
"FROM employee_extra "\
"WHERE vacation_days <> 0 AND (?)")

struct employee_vacation

{
h
As another example, consider a view that returns the next value of a database sequence:

#pragma db view query("SELECT nextval('my_seq’)")
struct sequence_value

{
unsigned long long value;

%

While this implementation can be acceptable in some cases, it has a number of drawbacks.
Firstly, the name of the sequence is fixed in the view, which means if we have a second sequence,
we will have to define another, almost identical view. Similarly, the operation that we perform on
the sequence is also fixed. In some situations, instead of returning the next value, we may need
the last value.

Note that we cannot use the placeholder mechanism to resolve these problems since placeholders
can only be used in tHWHEREGROUP BY and similar clauses. In other words, the following
won’t work:

#pragma db view query("SELECT nextval(’(?)")")
struct sequence_value

{
unsigned long long value;

%

result r (db.query<sequence_value> ("my_seq");

To support these kinds of use cases, ODB allows us to specify the complete query for a native
view at runtime rather than at the view definition. To indicate that a native view has a runtime
guery, we can either specify the emptyquery pragma or omit the pragma altogether. For
example:

#pragma db view
struct sequence_value

{
unsigned long long value;

%

Revision 1.8, January 2012 C++ Object Persistence with ODB 121

9.6 Other View Features and Limitations

Given this view, we can perform the following queries:

typedef odb::query<sequence_value> query;
typedef odb::result<sequence_value> result;

string seq_name = ...

result | (db.query<sequence_value> (
"SELECT lastval(™ + seq_name + ")"));

result n (db.query<sequence_value> (
"SELECT nextval(™ + seq_name +")"));

9.6 Other View Features and Limitations

Views cannot be derived from other views. However, you can derive a view from a transient C++
class. View data members cannot be object pointers. If you need to access data from a pointed-to
object, then you will need to associate such an object with the view. Similarly, view data
members cannot be containers. These two limitations also apply to composite value types that
contain object pointers or containers. Such composite values cannot be used as view data
members.

On the other hand, composite values that do not contain object pointers or containers can be used
in views. As an example, consider a modified version ofetin@loyee persistent class that
stores a person’s hame as a composite value:

#pragma db value
class person_name

{
std::string first_;
std::string last_;

h

#pragma db object
class employee

{

person_name name_;

};...

Given this change, we can re-implementeéhgloyee _name view like this:

122 C++ Object Persistence with ODB Revision 1.8, January 2012

9.6 Other View Features and Limitations

#pragma db view object(employee)
struct employee_name

person_name name;

%

It is also possible to extract some or all of the nested members of a composite value into individ-
ual view data members. Here is how we could have definedniptoyee name view if we
wanted to keep its original structure:

#pragma db view object(employee)
struct employee_name

{

#pragma db column(employee::name.first_)
std::string first;

#pragma db column(employee::name.last_)

std::string last;

%

Revision 1.8, January 2012 C++ Object Persistence with ODB 123

10 Session

10 Session

A session is an application’s unit of work that may encompass several database transactions. In
this version of ODB a session is just an object cache. In future versions it will provide additional
functionality, such as automatic object state change tracking.

Each thread of execution in an application can have only one active session at a time. A session is
started by creating an instance of thdb::session class and is automatically terminated
when this instance is destroyed. You will need to include<tiab/session.hxx> header

file to make this class available in your application. For example:

#include <odb/database.hxx>
#include <odb/session.hxx>
#include <odb/transaction.hxx>

using namespace odb::core;

{

session s;

/I First transaction.
1

{
transaction t (db.begin ());

t.commit ();

}

/I Second transaction.
1

{
transaction t (db.begin ());

t.commit ();

}

/I Session 's’ is terminated here.

}
Thesession class has the following interface:

namespace odb

{

class session

{

public:
session ();
~session ();

124 C++ Object Persistence with ODB Revision 1.8, January 2012

10 Session

/I Copying or assignment of sessions is not supported.
1
private:
session (const session&);
session& operator= (const session&);

/I Current session interface.
I
public:
static session&
current ();

static bool
has_current ();

static void
current (session&);

static void
reset_current ();

/I Object cache interface.
i
public:
typedef odb:.database database_type;

template <typename T>

void

insert (database_type&,
const object_traits<T>::id_typeg&,
const object_traits<T>::pointer_type&);

template <typename T>
object_traits<T>::pointer_type
find (database_type&, const object_traits<T>::id_type&) const;

template <typename T>
void
erase (database_typeg&, const object_traits<T>::id_type&);
I3
}

The session constructor creates a new session and sets it as a current session for this thread. If we
try to create another session while there is already a current session in effect, the constructor
throws theodb::already_in_session exception. The destructor clears the current session

for this thread if this session is the current one.

Revision 1.8, January 2012 C++ Object Persistence with ODB 125

10.1 Object Cache

The staticcurrent() accessor returns the currently active session for this thread. If there is no
active session, this function throws thdb::not_in_session exception. We can check
whether there is a session in effect in this thread usinigahecurrent() static function.

The staticcurrent() modifier allows us to set the current session for this thread. The
reset_current() static function clears the current session. These two functions allow for
more advanced use cases, such as multiplexing two or more sessions on the same thread.

We normally don’t use the object cache interface directly. However, it could be useful in some
cases, for example, to find out whether an object has already been loaded.

10.1 Object Cache

A session is an object cache. Every time an object is made persistent by calling the
database::persist() function [Section 3.7, "Making Objects Persistent"), loaded by
calling thedatabase::load() or database::find() function [Section 3.8, "Loading
[Persistent Objects"), or loaded by iterating over a query result (Section 4.4, "Query| Result"), the
pointer to the persistent object, in the form of the canonical object pginter (Section 3.2,|"Object
[and View Pointerg"), is stored in the session. For as long as the session is in effect, any subse-
guent calls to load the same object will return the cached instance. When an object’s state is
deleted from the database with tHiatabase:.erase() function [Section 3.10, "Deleting
[Persistent Objects"), the cached object pointer is removed from the session. For example:

shared_ptr<person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long id (db.persist (p)); /I pis cached in s.
shared_ptr<person> pl (db.load<person> (id)); // p1 same as p.

t.commit ();

The per-object caching policies depend on the object pointer|kind (Section 6.4, "Using|Custom
[Smart Pointers"). Objects with a unique pointer, sucstdisauto ptr , as an object pointer

are never cached since it is not possible to have two such pointers pointing to the same object.
When an object is persisted via a pointer or loaded as a dynamically allocated instance, objects
with both raw and shared pointers as object pointers are cached. If an object is persisted as a
reference or loaded into a pre-allocated instance, the object is only cached if its object pointer is a
raw pointer.

Also note that when we persist an object as a constant reference or constant pointer, the session
caches such an object as unrestricted @wist). This can lead to undefined behavior if the
object being persisted was actually createdaast and is later found in the session cache and

used as noweonst . As a result, when using sessions, it is recommended that all persistent

126 C++ Object Persistence with ODB Revision 1.8, January 2012

10.1 Object Cache

objects be created as noonst instances. The following code fragment illustrates this point:

void save (database& db, shared_ptr<const person> p)
{

transaction t (db.begin ());

db.persist (p); // Persisted as const pointer.

t.commit ();

}

session s;

shared_ptr<const person> p1 (new const person ("John", "Doe");
unsigned long id1 (save (db, p1)); / pl is cached in s as non-const.

{
transaction t (db.begin ());
shared_ptr<person> p (db.load<person> (id1)); // p == p1
p->age (30); // Undefined behavior since pl was created const.
t.commit ();

}

shared_ptr<const person> p2 (new person ("Jane", "Doe"));
unsigned long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
transaction t (db.begin ());
shared_ptr<person> p (db.load<person> (id2)); // p == p2
p->age (30); // Ok, since p2 was not created const.
t.commit ();

}

Revision 1.8, January 2012 C++ Object Persistence with ODB 127

11 Optimistic Concurrency

11 Optimistic Concurrency

The ODB transaction modegl (Section 3.4, "Transactjons") guarantees consistency as long as we
perform all the database operations corresponding to a specific application transaction in a single
database transaction. That is, if we load an object within a database transaction and update it in
the same transaction, then we are guaranteed that the object state that we are updating in the
database is exactly the same as the state we have loaded. In other words, it is impossible for
another process or thread to modify the object state in the database between these load and update
operations.

In this chapter we use the teapplication transaction to refer to a set of operations on persistent
objects that an application needs to perform in order to implement some application-specific
functionality. The terndatabase transaction refers to the set of database operations performed
between the ODBegin() andcommit() calls. Up until now we have treated application
transactions and database transactions as essentially the same thing.

While this model is easy to understand and straightforward to use, it may not be suitable for
applications that have long application transactions. The canonical example of such a situation is
an application transaction that requires user input between loading an object and updating it. Such
an operation may take an arbitrary long time to complete and performing it within a single
database transaction will consume database resources as well as prevent other processes/threads
from updating the object for too long.

The solution to this problem is to break up the long-lived application transaction into several
short-lived database transactions. In our example that would mean loading the object in one
database transaction, waiting for user input, and then updating the object in another database
transaction. For example:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

cerr << "enter age for " << p.first () << " " << p.last () << end];
unsigned short age;

cin >> age;

p.age (age);

{

128 C++ Object Persistence with ODB Revision 1.8, January 2012

11 Optimistic Concurrency

transaction t (db.begin ());
db.update (p);
t.commit ();

}

This approach works well if we only have one process/thread that can ever update the object.
However, if we have multiple processes/threads modifying the same object, then this approach
does not guarantee consistency anymore. Consider what happens in the above example if another
process updates the person’s last name while we are waiting for the user input. Since we loaded
the object before this change occured, our version of the person’s data will still have the old
name. Once we receive the input from the user, we go ahead and update the object, overwriting
both the old age with the new one (correct) and the new name with the old one (incorrect).

While there is no way to restore the consistency guarantee in an application transaction that
consists of multiple database transactions, ODB provides a mechanism, called optimistic concur-
rency, that allows applications to detect and potentially recover from such inconsistencies.

In essence, the optimistic concurrency model detects mismatches between the current object state
in the database and the state when it was loaded into the application memory. Such a mismatch
would mean that the object was changed by another process or thread. There are several ways to
implement such state mismatch detection. Currently, ODB uses object versioning while other
methods, such as timestamps, may be supported in the future.

To declare a persistent class with the optimistic concurrency model we ugptithistic
pragma|(Section 12.1.508timistic "). We also use theersion pragma|(Section 12.4.1P,
"version ") to specify which data member will store the object version. For example:

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

g

The version data member is managed by ODB. It is initializetl ¥chen the object is made
persistent and incremented bywith each update. The version value is not used by ODB and

the application can use it as a special value, for example, to indicate that the object is transient.
Note that for optimistic concurrency to function properly, the application should not modify the
version member after making the object persistent or loading it from the database and until delet-
ing the state of this object from the database. To avoid any accidental modifications to the version
member, we can declarechnst , for example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 129

11 Optimistic Concurrency

#pragma db object optimistic
class person

{

#pragma db version
const unsigned long version_;

%

When we call thedatabase::update() function [Section 3.9, "Updating Persistgnt
[Objects]) and pass an object that has an outdated statelthebject_changed exception

is thrown. At this point the application has two recovery options: it can abort and potentially
restart the application transaction or it can reload the new object state from the database, re-apply
or merge the changes, and agtidate() again. Note that aborting an application transaction

that performs updates in multiple database transactions may require reverting changes that have
already been committed to the database. As a result, this strategy works best if all the updates are
performed in the last database transaction of the application transaction. This way the changes
can be reverted by simply rolling back this last database transaction.

The following example shows how we can reimplement the above transaction using the second
recovery option:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

cerr << "enter age for " << p.first () << " " << p.last () << end];
unsigned short age;

cin >> age;

p.age (age);

{
transaction t (db.begin ());

try
{
db.update (p);

catch (const object_changed&)
db.reload (p);

p.age (age);
db.update (p);

130 C++ Object Persistence with ODB Revision 1.8, January 2012

11 Optimistic Concurrency

}

t.commit ();

}

An important point to note in the above code fragment is that the sepdate() call cannot
throw theobject_changed exception because we are reloading the state of the object and
updating it within the same database transaction.

Depending on the recovery strategy employed by the application, an application transaction with
a failed update can be significantly more expensive than a successful one. As a result, optimistic
concurrency works best for situations with low to medium contention levels where the majority
of the application transactions complete without update conflicts. This is also the reason why this
concurrency model is called optimistic.

In addition to updates, ODB also performs state mismatch detection when we are deleting an
object from the databasge (Section 3.10, "Deleting Persistent Opjects"). To understand why this
can be important, consider the following application transaction:

unsigned long id = ...;
person p;

{
transaction t (db.begin ());

db.load (id, p);
t.commit ();

}

string answer;
cerr << "age is " << p.age () << ", delete?" << endl;
getline (cin, answer);

if (answer == "yes")

{
transaction t (db.begin ());

db.erase (p);
t.commit ();

}

Consider again what happens if another process or thread updates the object by changing the
person’s age while we are waiting for the user input. In this case, the user makes the decision
based on a certain age while we may delete (or not delete) an object that has a completely differ-
ent age. Here is how we can fix this problem using optimistic concurrency:

unsigned long id = ...;
person p;

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 131

11 Optimistic Concurrency

transaction t (db.begin ());
db.load (id, p);
t.commit ();

}

string answer;
for (bool done (false); !done;)

{

if (answer.empty ())
cerr << "ageis " << p.age () << ", delete?" << endl;
else
cerr << "age changed to " << p.age () << ", still delete?" << endl;

getline (cin, answer);

if (answer == "yes")

{
transaction t (db.begin ());

try
{
db.erase (p);

done = true;

}

catch (const object_changed&)

{
db.reload (p);

}

t.commit ();

}

else
done = true;

}

Note that state mismatch detection is performed only if we delete an object by passing the object
instance to therase() function. If we want to delete an object with the optimistic concurrency
model regardless of its state, then we need to user#ise() function that deletes an object
given its id, for example:

{
transaction t (db.begin ());

db.erase (p.id ());
t.commit ();

}

Finally, note that for persistent classes with the optimistic concurrency model both the
update() function as well as therase() function that accepts an object instance as its argu-
ment no longer throw thebject_not_persistent exception if there is no such object in

the database. Instead, this condition is treated as a change of object state and the

132 C++ Object Persistence with ODB Revision 1.8, January 2012

11 Optimistic Concurrency

object_changed exception is thrown instead.

For complete sample code that shows how to use optimistic concurrency, referofithe
mistic example in th@db-examples package.

Revision 1.8, January 2012 C++ Object Persistence with ODB 133

12 ODB Pragma Language

12 ODB Pragma Language

As we have already seen in previous chapters, ODB uses a pragma-based language to capture
database-specific information about C++ types. This chapter describes the ODB pragma language
in more detail. It can be read together with other chapters in the manual to get a sense of what
kind of configurations and mapping fine-tuning are possible. You can also use this chapter as a
reference at a later stage.

An ODB pragma has the following syntax:
#pragmadb qualifier [specifier specifier ..]

The qualifier tells the ODB compiler what kind of C++ construct this pragma describes. Valid
qualifiers areobject , view , value , member, andnamespace . A pragma with th@bject

qualifier describes a persistent object type. It tells the ODB compiler that the C++ class it
describes is a persistent class. Similarly, pragmas witkigve qualifier describe view types,

the value qualifier describes value types and thember qualifier is used to describe data
members of persistent object, view, and value types. ndmespace qualifier is used to
describe common properties of objects, views, and value types that belong to a C++ namespace.

The specifier informs the ODB compiler about a particular database-related property of the C++
declaration. For example, thd member specifier tells the ODB compiler that this member
contains this object’s identifier. Below is the declaration ofpitison class that shows how we

can use ODB pragmas:

#pragma db object
class person

{

private:
#pragma db member id
unsigned long id_;

};...

In the above example we don’t explicitly specify which C++ class or data member the pragma
belongs to. Rather, the pragma applies to a C++ declaration that immediately follows the pragma.
Such pragmas are callpdsitioned pragmas. In positioned pragmas that apply to data members,
themember qualifier can be omitted for brevity, for example:

#pragma db id
unsigned long id_;

134 C++ Object Persistence with ODB Revision 1.8, January 2012

12 ODB Pragma Language

Note also that if the C++ declaration immediately following a position pragma is incompatible
with the pragma qualifier, an error will be issued. For example:

#pragma db object // Error: expected class instead of data member.
unsigned long id_;

While keeping the C++ declarations and database declarations close together eases maintenance
and increases readability, we can also place them in different parts of the same header file or even
factor them to a separate file. To achieve this we use the so cathed pragmas. Unlike posi-

tioned pragmas, named pragmas explicitly specify the C++ declaration to which they apply by
adding the declaration name after the pragma qualifier. For example:

class person

{

private:
unsigned long id_;

};...

#pragma db object(person)
#pragma db member(person::id) id

Note that in the named pragmas for data membersémeber qualifier is no longer optional.
The C++ declaration name in the named pragmas is resolved using the standard C++ name reso-
lution rules, for example:

namespace db

{

class person
{
private:
unsigned long id_;

.
}

namespace db

{

#pragma db object(person) // Resolves db::person.

}

#pragma db member(db::person::id_) id

As another example, the following code fragment shows how to use the named value type pragma
to map a C++ type to a native database type:

Revision 1.8, January 2012 C++ Object Persistence with ODB 135

12.1 Object Type Pragmas

#pragma db value(bool) type("INT")

#pragma db object
class person

{

private:
bool married_; // Mapped to INT NOT NULL database type.

};...

If we would like to factor the ODB pragmas into a separate file, we can include this file into the
original header file (the one that defines the persistent types) usi#ntthede directive, for
example:

/I person.hxx

class person

{
=

#ifdef ODB_COMPILER
include "person-pragmas.hxx"
#endif

Alternatively, instead of using th#include directive, we can use theodb-epilogue
option to make the pragmas known to the ODB compiler when compiling the original header file,
for example:

--odb-epilogue '#include "person-pragmas.hxx™

The following three sections cover the specifiers applicable toolbject , value , and
member qualifiers.

The C++ header file that defines our persistent classes and normally contains one or more ODB
pragmas is compiled by both the ODB compiler to generate the database support code and the
C++ compiler to build the application. Some C++ compilers issue warnings about pragmas that
they do not recognize. There are several ways to deal with this problem which are covered at the
end of this chapter [n Section 12.6, "C++ Compiler Warnjngs".

12.1 Object Type Pragmas

A pragma with thebject qualifier declares a C++ class as a persistent object type. The quali-
fier can be optionally followed, in any order, by one or more specifiers summarized in the table
below:

136 C++ Object Persistence with ODB Revision 1.8, January 2012

12.1.1 table

Specifier Summary Section
table table name for a persistent class
pointer pointer type for a persistent class 12.1
abstract persistent class is abstract
readonly persistent class is read-only
optimistic persistent class with the optimistic concurrency m([12.1.%
id persistent class has no object id 12.1.6
callback database operations callback
schema database schema for a persistent class 12.1.8
12.1.1table

Thetable specifier specifies the table name that should be used to store objects of a class in a
relational database. For example:

#pragma db object table("people™)
class person

{
=

If the table name is not specified, the class name is used as the table name. The table name can be
gualified with a database schema, for example:

#pragma db object table("census.people”)
class person

{
=

For more information on database schemas and the format of the qualified namesd], refer o Section
(12.1.8, schema"]

12.1.2pointer

Thepointer specifier specifies the object pointer type for a persistent class. The object pointer
type is used to return, pass, and cache dynamically allocated instances of a persistent class. For
example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 137

12.1.3 abstract

#pragma db object pointer(std::trl::shared_ptr<person>)
class person

{
=

There are several ways to specify an object pointer witlpoirger specifier. We can use a
complete pointer type as shown in the example above. Alternatively, we can specify only the
template name of a smart pointer in which case the ODB compiler will automatically append the
class name as a template argument. The following example is therefore equivalent to the one
above:

#pragma db object pointer(std::trl::shared_ptr)
class person

{

3

If you would like to use the raw pointer as an object pointer, you cah as@ shortcut:
#pragma db object pointer(*) // Same as pointer(person*)

class person

{

3

If a pointer type is not explicitly specified, the default pointer, specified with the
--default-pointer ODB compiler option, is used. If this option is not specified either, then
the raw pointer is used by default.

For a more detailed discussion of object pointers, refer to Section 3.2, "Object and Vieyv Point-

[erst.
12.1.3abstract

The abstract specifier specifies that a persistent class is abstract. An instance of an abstract
class cannot be stored in the database and is normally used as a base for other persistent classes.
For example:

#pragma db object abstract
class person

{
=

#pragma db object
class employee: public person

{

138 C++ Object Persistence with ODB Revision 1.8, January 2012

12.1.4 readonly

};...

#pragma db object
class contractor: public person

{
=

Persistent classes with pure virtual functions are automatically treated as abstract by the ODB
compiler. For a more detailed discussion of persistent class inheritance, rgfer to Chapter 8,
"Inheritance"

12.1.4readonly

Thereadonly specifier specifies that the persistent class is read-only. The database state of
read-only objects cannot be updated. In particular, this means that you cannot call the
database::update() function [Section 3.9, "Updating Persistent Objects") for such objects.
For example:

#pragma db object readonly
class person

{
=

Read-only and read-write objects can derive from each other without any restrictions. When a
read-only object derives from a read-write object, the resulting whole object is read-only, includ-
ing the part corresponding to the read-write base. On the other hand, when a read-write object
derives from a read-only object, all the data members that correspond to the read-only base are
treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data mempbers (Section 12rdatnrly ")
as well as composite value types (Section 12.88dbnly ") as read-only.

12.1.50ptimistic

The optimistic specifier specifies that the persistent class has the optimistic concurrency
model. A class with the optimistic concurrency model must also specify the data member that is
used to store the object version usingvhesion pragma|(Section 12.4.1e€rsion "). For
example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 139

12.16id

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

%

If a base class has the optimistic concurrency model, then all its derived classes will automati-
cally have the optimistic concurrency model. The current implementation also requires that in any
given inheritance hierarchy the object id and the version data members reside in the same class.

For a more detailed discussion of optimistic concurrency, refér to Chapter 11, "Optimistic

12.1.6id

Theid specifier specifies that the persistent class has no object id. It should be followed by
opening and closing parenthesis. For example:

#pragma db object id()
class person

{
=

A persistent class without an object id has limited functionality. Such a class cannot be loaded
with the database::load() or database::find() functions |(Section 3.8, "Loading
[Persistent Objects"), updated with th&tabase::update() function [Section 3.9, "Updat-

[ng Persistent Objec{s"), or deleted with tli@tabase::erase() function [Section 3.10,
['Deleting Persistent Objecis"). To load and delete objects without ids you can use the
database::query() (Chapter 4, "Querying the Databgse") and

database:.erase_query() (Section 3.10, "Deleting Persistent Objgcts") functions,
respectively. There is no way to update such objects except by using native SQL statements
(Section 3.11, "Executing Native SQL Statemgnts").

Furthermore, persistent classes without object ids cannot have container data members nor can
they be used in object relationships. Such objects are not entered into the session object cache
(Section 10.1, "Object Cache") either.

To declare a persistent class with an object id, use the data miémbpecifier [(Section 12.4.11,

140 C++ Object Persistence with ODB Revision 1.8, January 2012

12.1.7 callback

12.1.7callback

Thecallback specifier specifies the persist class member function that should be called before
and after a database operation is performed on an object of this class. For example:

#include <odb/callback.hxx>

#pragma db object callback(init)
class person

{

void
init (odb::callback event, odb::databaseg&);

}1
The callback function has the following signature and can be overloaded for constant objects:

void
name (odb::callback event, odb::database&);

void
name (odb::callback event, odb::database&) const;

The first argument to the callback function is the event that triggered this catidbheall-
back_event enum-like type is defined in tkedb/callback.hxx> header file and has the
following interface:

namespace odb

{

struct callback_event

{

enum value

{ .
pre_persist,
post_persist,
pre_load,
post_load,
pre_update,
post_update,
pre_erase,
post_erase

k

callback_event (value v);
operator value () const;
I3
}

Revision 1.8, January 2012 C++ Object Persistence with ODB 141

12.1.7 callback

The second argument to the callback function is the database on which the operation is about to
be performed or has just been performed.

If only the noneonst version of the callback function is provided, then only database operations
that are performed on unrestricted objects will trigger callback calls. If onlyotist version is
provided, then the database operations on both constant and unrestricted objects will trigger call-
back calls but the object will always be passed as constant. Finally, if both versions are provided,
then theconst overload will be called for constant objects and the camst overload for
unrestricted objects. These rules are modeled after the standard C++ overload resolution rules. A
callback function can be inline or virtual.

A database operations callback can be used to implement object-specific pre and post initializa-
tions, registrations, and cleanups. As an example, the following code fragment outlines an imple-
mentation of gperson class that maintains the transiegfe data member in addition to the
persistent date of birth. A callback is used to calculate the value of the former from the latter
every time gerson object is loaded from the database.

#include <odb/core.hxx>
#include <odb/callback.hxx>

#pragma db object callback(init)
class person

{

private:
friend class odb::access;

date born_;

#pragma db transient
unsigned short age_;

void
init (odb::callback event e, odb::database&)

switch (e)

{

case odb::callback_event::post_load:

{

/I Calculate age from the date of birth.
break;

}

default:

142 C++ Object Persistence with ODB Revision 1.8, January 2012

12.1.8 schema

12.1.8schema
Theschema specifier specifies a database schema that should be used for a persistent class.

In relational databases the term schema can refer to two related but ultimately different concepts.
Normally it means a collection of tables, indexes, sequences, etc., that are created in the database
or the actual DDL statements that create these database objects. Some database implementations
support what would be more accurately callethi@base namespace but is also called a schema.

In this sense, a schema is a separate namespace in which tables, indexes, sequences, etc., can be
created. For example, two tables that have the same name can coexist in the same database if they
belong to different schemas. In this section when we talk about a schema, we refer to the
database namespace meaning of this term.

When schemas are in use, a database object name is qualified with a schema. For example:
CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...

In the above examplaccounting is the schema and tlemployee table belongs to this
schema.

Not all database implementations support schemas. Some implementation that don’t support
schemas (for example, MySQL, SQLite) allow the use of the above syntax to specify the database
name. Yet others may support several levels of qualification. For example, Microsoft SQL Server
has three levels starting with the linked database server, followed by the database, and then
followed by the schemaerverl.companyl.accounting.employee . While the actual
meaning of the qualifier in a qualified name vary from one database implementation to another,
here we refer to all of them collectively as a schema.

In ODB, a schema for a table of a persistent class can be specified at the class level, C++ names-
pace level, or the file level. To assign a schema to a specific persistent class we can use the
schema specifier, for example:

#pragma db object schema("accounting”)
class employee

{
=

Revision 1.8, January 2012 C++ Object Persistence with ODB 143

12.1.8 schema

If we are also assigning a table name, then we can use a shorter notation by specifying both the
schema and the table name inthigle specifier:

#pragma db object table("accounting.employee")
class employee

{
=

If we want to assign a schema to all the persistent classes in a C++ namespace, then, instead of
specifying the schema for each class, we can specify it once at the C++ namespace level. For
example:

#pragma db namespace schema("accounting")
namespace accounting

{
#pragma db object

class employee

{
=

#pragma db object
class employer

{

=
}

Similar to other qualifiers, theamespace qualifier can also refer to a named C++ namespace,
for example:

namespace accounting

{
=

#pragma db namespace(accounting) schema("accounting")

If we want to assign a schema to all the persistent classes in a file, then we can use the
--schema ODB compiler option. For example:

odb ... --schema accounting ...

The alternative to this approach with the same effect is to assign a schema to the global names-
pace. To refer to the global namespace imdmaespace qualifier we use the following special
syntax:

144 C++ Object Persistence with ODB Revision 1.8, January 2012

12.1.8 schema

#pragma db namespace() schema("accounting”)

By default schema qualifications are accumulated starting from the persistent class, continuing
with the namespace hierarchy to which this class belongs, and finishing with the schema specified
with the--schema option. For example:

#pragma db namespace schema("audit_db")
namespace audit
{
#pragma db namespace schema("accounting”)
namespace accounting
{
#pragma db object
class employee

}

If we compile the above code fragment with thechema serverl option, then the
employee table will have theserverl.audit_db.accounting.employee qualified
name.

In some situations we may want to prevent such accumulation of the qualifications. To accom-
plish this we can use the so-called fully-qualified names, which have the empty leading name
component. This is analogous to the C++ fully-qualified names in :#ecount-
ing::employee form. For example:

#pragma db namespace schema("accounting")
namespace accounting

{
#pragma db object schema(".hr")

class employee

{
=

#pragma db object
class employer

{

=
}

In the above code fragment, tamployee table will have thérr.employee qualified name
while theemployer — accounting.employer . Note also that the empty leading name
component is a special ODB syntax and is not propagated to the actual database names (using a

Revision 1.8, January 2012 C++ Object Persistence with ODB 145

12.2 View Type Pragmas

name like.hr.employee to refer to a table will most likely result in an error).

Auxiliary database objects for a persistent class, such as indexes, sequences, triggers, etc., are all
created in the same schema as the class table. By default, this is also true for the container tables.
However, if you need to store a container table in a different schema, then you can provide a
qualified name using thiable specifier, for example:

#pragma db object table("accounting.employee")
class employee

{

#pragma db object table("operations.projects")
std::vector<std::string> projects_;

%

The standard syntax for qualified names used is¢thema andtable specifiers as well as the

view column specifier |(Section 12.4.8,c6lumn_ (view)') has the" name. name...” form

where, as discussed above, the leading name component can be empty to denote a fully qualified
name. This form, however, doesn’t work if one of the name components contains periods. To
support such cases the alternative form is availdlolame"." name" ... For example:

#pragma db object table("accounting_1.2"."employee")
class employee

{
=

Finally, to specify an unqualified name that contains periods we can use the following special
syntax:

#pragma db object schema(."accounting_1.2") table("employee")
class employee

{
=

12.2 View Type Pragmas

A pragma with theview qualifier declares a C++ class as a view type. The qualifier can be
optionally followed, in any order, by one or more specifiers summarized in the table below:

146 C++ Object Persistence with ODB Revision 1.8, January 2012

12.2.1 object

Specifier Summary Section
object object associated with a vie
table table associated with a viev|12.2.2
query view query condition
pointer pointer type for a view
callback database operations callba(|12.2.%

For more information on view types refelf to Chapter 9, "Views".

12.2.10bject

Theobject specifier specifies a persistent class that should be associated with a view. For more
information on object associations refer to Section 9.1, "Object Miews".

12.2.2table

Thetable specifier specifies a database table that should be associated with a view. For more
information on table associations refef to Section 9.2, "Table Viiews".

12.2.3query

The query specifier specifies a query condition for an object or table view or a native SQL
query for a native view. An emptyuery specifier indicates that a native SQL query is provided
at runtime. For more information on query conditions refer to Section 9.4, "View Query |Condi-
ftions]. For more information on native SQL queries, refer to Section 9.5, "Native Views".

12.2.4pointer

The pointer specifier specifies the view pointer type for a view class. Similar to objects, the
view pointer type is used to return dynamically allocated instances of a view class. The semantics
of the pointer specifier for a view are the same as those ofpthiater specifier for an

object [Section 12.1.2pbdinter _").

12.2.5callback

The callback specifier specifies the view class member function that should be called before
and after an instance of this view class is created as part of the query result iteration. The seman-
tics of thecallback specifier for a view are similar to those of ttedlback specifier for an

object (Section 12.1.7callback ") except that the only events that can trigger a callback call

in the case of a view apge_load andpost_load

Revision 1.8, January 2012 C++ Object Persistence with ODB 147

12.3 Value Type Pragmas

12.3 Value Type Pragmas

A pragma with thevalue qualifier describes a value type. It can be optionally followed, in any

order, by one or more specifiers summarized in the table below:

Specifier Summary
type database type for a value type
id_type database type for a value type when used as

object id

null /not_null

type can/cannot bidULL

=l = A [»
NI
X o

>

default default value for a value type

options database options for a value type 12.3.%
readonly composite value type is read-only 12.3.6
unordered ordered container should be stored unordere
index_type database type for a container’s index type |[12.3.8
key_type database type for a container’s key type 12.3.9
value_type database type for a container’s value type |(12.3.1(
value_null /value_not_null container’s value can/cannot N&JLL
id_options database options for a container’s id column
index_options database options for a container’s index colu|(12.3.13
key options database options for a container’s key colum (12.3.14
value_options database options for a container’s value colu
id_column column name for a container’s object id
index_column column name for a container’s index
key column column name for a container’s key 12.3.18
value_column column name for a container’s value 12.3.19

Many of the value type specifiers have corresponding member type specifiers with the same
names|(Section 12.4, "Data Member Pragnas"). The behavior of such specifiers for members is
similar to that for value types. The only difference is the scope. A particular value type specifier

applies to all the members of this value type that don’t have a pre-member version of the speci-

148 C++ Object Persistence with ODB Revision 1.8, January 2012

12.3.1 type

fier, while the member specifier always applies only to a single member. Also, with a few excep-
tions, member specifiers take precedence over and override parameters specified with value spec-
ifiers.

12.3.1type

The type specifier specifies the native database type that should be used for data members of
this type. For example:

#pragma db value(bool) type("INT")

#pragma db object
class person

{

bool married_; // Mapped to INT NOT NULL database type.
3

The ODB compiler provides the default mapping between common C++ types, sbobl gs

int , andstd::string and the database types for each supported database system. For more
information on the default mapping, refer [to Part Il, "Database Systems"ndlhe and
not_null (Section 12.3.3,dull /not null ") specifiers can be used to control the NULL
semantics of a type.

In the above example we changed the mapping fobdloé type which is now mapped to the

INT database type. In this case, ttwdue pragma is all that is necessary since the ODB
compiler will be able to figure out how to store a boolean value as an integer in the database.
However, there could be situations where the ODB compiler will not know how to handle the
conversion between the C++ and database representations of a value. Consider, as an example, a
situation where the boolean value is stored in the database as a string:

#pragma db value(bool) type("VARCHAR(5)")

The possible database values for the Gre value could be'true” , or "TRUE", or

“True" . Or, maybe, all of the above could be valid. The ODB compiler has no way of knowing
how your application wants to convédol to a string and back. To support such custom value
type mappings, ODB allows you to provide your own database conversion functions by specializ-
ing the value_traits class template. Thenapping example in theodb-examples

package shows how to do this for all the supported database systems.

Revision 1.8, January 2012 C++ Object Persistence with ODB 149

12.3.2 id_type

12.3.2id_type

Theid_type specifier specifies the native database type that should be used for data members
of this type that are designated as object identifiers (Section 12dl.), Tn combination with
thetype specifier|(Section 12.3.1type ") id_type allows you to map a C++ type differently
depending on whether it is used in an ordinary member or an object id. For example:

#pragma db value(std::string) type("TEXT") id_type("VARCHAR(128)")

#pragma db object
class person

{

#pragma db id
std::string email_; // Mapped to VARCHAR(128) NOT NULL.

std::string name_; // Mapped to TEXT NOT NULL.
3

Note that there is no corresponding member type specifiéd foype since the desired result
can be achieved with just thype specifier, for example:

#pragma db object
class person

{

#pragma db id type("VARCHAR(128)")
std::string email_;

h
12.3.3null /not_null

Thenull andnot_null specifiers specify that a value type or object pointer can or cannot be
NULL, respectively. By default, value types are assumed not to Blldkt values while object
pointers are assumed to alldWWLL values. Data members of types that allMWLL values are
mapped in a relational database to columns that alowi. values. For example:

using std::trl::shared_ptr;

typedef shared_ptr<std::string> string_ptr;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person

{

150 C++ Object Persistence with ODB Revision 1.8, January 2012

12.3.4 default

string_ptr name_; // Mapped to TEXT NULL.
3

typedef shared_ptr<person> person_ptr;
#pragma db value(person_ptr) not_null

The NULL semantics can also be specified on the per-member hasis (Section 12.4.4,
['null_/not_null__"). If both a type and a member hawell /not_null specifiers, then the
member specifier takes precedence. If a member specifier relaXgbthesemantics (that is, if

a member has theull specifier and the type has the expliedt_null specifier), then a
warning is issued.

It is also possible to override a previously specifial /not_null specifier. This is primarily
useful if a third-party type, for example, one provided by a profile libtary (Part IIl, "Profiles"),
allows NULL values but in your object model data members of this type should neigslie

In this case you can use thet_null specifier to disabl&ULL values for this type for the
entire translation unit. For example:

/I By default, null_string allows NULL values.
1
#include <null-string.hxx>

/I Disable NULL values for all the null_string data members.
I
#pragma db value(null_string) not_null

For a more detailed discussion of tiEILL semantics for values, refer{to Section 7.3, "Pointers
[and NULL Value Semantic$". For a more detailed discussion ofNtbkeL semantics for object
pointers, refer tp Chapter 6, "Relationshjps".

12.3.4default

Thedefault specifier specifies the database default value that should be used for data members
of this type. For example:

#pragma db value(std::string) default("")

#pragma db object
class person

{

std::string name_; // Mapped to TEXT NOT NULL DEFAULT ".
h

Revision 1.8, January 2012 C++ Object Persistence with ODB 151

12.3.5 options

The semantics of théefault specifier for a value type are similar to those of db&ault
specifier for a data membeér (Section 12.4default).

12.3.50ptions

The options specifier specifies additional column definition options that should be used for
data members of this type. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person

{

std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
3

The semantics of theptions specifier for a value type are similar to those ofdpg&ons
specifier for a data membeér (Section 12.4dptions).

12.3.6readonly

Thereadonly specifier specifies that the composite value type is read-only. Changes to data
members of a read-only composite value type are ignored when updating the database state of an
object [Section 3.9, "Updating Persistent Objg¢cts") containing such a value type. Note that this
specifier is only valid for composite value types. For example:

#pragma db value readonly
class person_name

{
=

Read-only and read-write composite values can derive from each other without any restrictions.
When a read-only value derives from a read-write value, the resulting whole value is read-only,
including the part corresponding to the read-write base. On the other hand, when a read-write
value derives from a read-only value, all the data members that correspond to the read-only base
are treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data mempbers (Section 12rdatnrly ")
as well as whole objects (Section 12.1réadonly ") as read-only.

152 C++ Object Persistence with ODB Revision 1.8, January 2012

12.3.7 unordered

12.3.7unordered

Theunordered specifier specifies that the ordered container should be stored unordered in the
database. The database table for such a container will not contain the index column and the order
in which elements are retrieved from the database may not be the same as the order in which they
were stored. For example:

typedef std::vector<std::string> names;
#pragma db value(names) unordered

For a more detailed discussion of ordered containers and their storage in the database, refer to
[Section 5.1, "Ordered Containgrs".

12.3.8index_type

Theindex_type specifier specifies the native database type that should be used for an ordered
container’s index column. The semanticsnofex_type are similar to those of thigpe spec-

ifier (Section 12.3.1,type "). The native database type is expected to be an integer type. For
example:

typedef std::vector<std::string> names;
#pragma db value(names) index_type("SMALLINT UNSIGNED")

12.3.9key _type

The key _type specifier specifies the native database type that should be used for a map
container’s key column. The semantickef/_type are similar to those of thgpe specifier
(Section 12.3.1,type "). For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")

12.3.10value_type

The value_type specifier specifies the native database type that should be used for a
container’s value column. The semanticyvalie_type are similar to those of thigpe spec-
ifier (Section 12.3.1,type "). For example:

typedef std::vector<std::string> names;
#pragma db value(names) value_type("VARCHAR(255)")

Thevalue_null andvalue_not_null (Section 12.3.11,
['value null /value not null ") specifiers can be used to control the NULL semantics of
a value column.

Revision 1.8, January 2012 C++ Object Persistence with ODB 153

12.3.11 value_null/ivalue_not_null

12.3.11value _null /value_not_null

The value_null andvalue_not_null specifiers specify that a container type’s element
value can or cannot beNULL, respectively. The semantics ofalue_null and
value _not_null are similar to those of thaull andnot_null specifiers|(Section 12.3.3,

['null_/not null). For example:

using std::trl::shared_ptr;

#pragma db object
class account

{
=

typedef std::vector<shared_ptr<account> > accounts;
#pragma db value(accounts) value_not_null

For set and multiset containers (Section 5.2, "Set and Multiset Conthiners") the element value is
automatically treated as not allowingNaJLL value.

12.3.12id_options

Theid_options specifier specifies additional column definition options that should be used
for a container’s id column. For example:

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) id_options("COLLATE binary")

The semantics of thi&l_options specifier for a container type are similar to those of the
id_options specifier for a container data member (Section 12.4id 9ptions ").

12.3.13index_options

The index_options specifier specifies additional column definition options that should be
used for a container’s index column. For example:

typedef std::vector<std::string> nicknames;
#pragma db value(nicknames) index_options("ZEROFILL")

The semantics of thiedex_options specifier for a container type are similar to those of the
index_options specifier for a container data member| (Section 12.4.30,
['index options).

154 C++ Object Persistence with ODB Revision 1.8, January 2012

12.3.14 key_options

12.3.14key options

Thekey_options specifier specifies additional column definition options that should be used
for a container’s key column. For example:

typedef std::map<std::string, std::string> properties;
#pragma db value(properties) key_ options("COLLATE binary")

The semantics of theey options specifier for a container type are similar to those of the
key options specifier for a container data member (Section 12.4K&Y, 'options _").

12.3.15value_options

The value_options specifier specifies additional column definition options that should be
used for a container’s value column. For example:

typedef std::set<std::string> nicknames;
#pragma db value(nicknames) value_options("COLLATE binary")

The semantics of thealue_options specifier for a container type are similar to those of the
value_options specifier for a container data member| (Section 12.4.32,
['value options).

12.3.16id_column

Theid_column specifier specifies the column name that should be used to store the object id in
a container’s table. For example:

typedef std::vector<std::string> names;
#pragma db value(names) id_column("id")

If the column name is not specified, thaject_id is used by default.

12.3.17index_column

The index_column specifier specifies the column name that should be used to store the
element index in an ordered container’s table. For example:

typedef std::vector<std::string> names;
#pragma db value(names) index_column("name_number")

If the column name is not specified, thadex is used by default.

Revision 1.8, January 2012 C++ Object Persistence with ODB 155

12.4 Data Member Pragmas

12.3.18key column

Thekey_column specifier specifies the column name that should be used to store the key in a
map container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key column("age")

If the column name is not specified, tHay is used by default.

12.3.19value_column

The value_column specifier specifies the column name that should be used to store the
element value in a container’s table. For example:

typedef std::map<unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) value_column("weight")

If the column name is not specified, thealue is used by default.

12.4 Data Member Pragmas

A pragma with themember qualifier or a positioned pragma without a qualifier describes a data
member. It can be optionally followed, in any order, by one or more specifiers summarized in the
table below:

Specifier Summary Section

id member is an object id
auto id is assigned by the database 12.4

type database type for a member
null /not_null member can/cannot IULL
default default value for a member 12.4.%
options database options for a member 12.4.6
column ggl;r;:gr::r\r;:hjc;r a member of an object or
column column name for a member of a view 12.4.8
transient member is not stored in the database 12.4.9

156 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.1id

readonly member is read-only
inverse :zleargsﬁgrﬁpan inverse side of a bidirectional
version member stores object version 12.4.12
unordered ordered container should be stored unordere|(12.4.13
table table name for a container 12.4.14
index_type database type for a container’s index type |[12.4.1%
key type database type for a container’s key type
value_type database type for a container’s value type |[12.4.17
value_null /value_not_null container’s value can/cannot N&JLL 12.4.18
id_options database options for a container’s id column|(12.4.19
index_options database options for a container’s index colu
key options database options for a container’s key colum|(12.4.2

value_options database options for a container’s value colu|[12.4.22
id_column column name for a container’s object id 12.4.23
index_column column name for a container’s index 12.4.24
key_column column name for a container’s key 12.4.2%
value_column column name for a container’s value 12.4.26¢

Many of the member specifiers have corresponding value type specifiers with the same names
(Section 12.3, "Value Type Pragmias"). The behavior of such specifiers for members is similar to
that for value types. The only difference is the scope. A particular value type specifier applies to
all the members of this value type that don’t have a pre-member version of the specifier, while
the member specifier always applies only to a single member. Also, with a few exceptions,
member specifiers take precedence over and override parameters specified with value specifiers.

12.4.1id

Theid specifier specifies that a data member contains the object id. In a relational database, an
identifier member is mapped to a primary key. For example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 157

12.4.2 auto

#pragma db object
class person

{

#pragma db id
std::string email_;

%

Normally, every persistent class has a data member designated as an object’s identifier. However,
it is possible to declare a persistent class without an id using the @bjespecifier [(Sectidn
12.1.6,7d ").

Note also that theéd specifier cannot be used for data members of composite value types or
views.

12.4.2auto

Theauto specifier specifies that the object’s identifier is automatically assigned by the database.
Only a member that was designated as an object id can have this specifier. For example:

#pragma db object
class person

{

#pragma db id auto
unsigned long id_;

g

Note that automatically-assigned object ids are not reused. If you have a high object turnover
(that is, objects are routinely made persistent and then erased), then care must be taken not to run
out of object ids. In such situations, usimgsigned long long as the identifier type is a

safe choice.

For additional information on the automatic identifier assignment, refer to Section 3.7, "Making
[Objects Persistent".

Note also that thauto specifier cannot be specified for data members of composite value types
or views.

12.4.3type

Thetype specifier specifies the native database type that should be used for a data member. For
example:

158 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.4 null/not_null

#pragma db object
class person

{

#pragma db type("INT")
bool married_;

%

The null and not_null (Section 12.4.4,dull /not null ") specifiers can be used to
control the NULL semantics of a data member.

12.4.4null /not_null

Thenull andnot_null specifiers specify that a data member can or cannidtlg, respec-

tively. By default, data members of basic value types for which database mapping is provided by
the ODB compiler do not alloMULL values while data members of object pointers alNaW._L

values. Other value types, such as those provided by the profile libtaries (Part I, "Brofiles"),
may or may not alloNULL values, depending on the semantics of each value type. Consult the
relevant documentation to find out more abouthhé L semantics for such value types. A data
member containing the object |d (Section 12.4id.,"|) is automatically treated as not allowing a
NULL value. Data members that alloMULL values are mapped in a relational database to
columns that alloiNULL values. For example:

using std::trl::shared_ptr;

#pragma db object
class person

{

#pragma db null
std::string name_;

g

#pragma db object
class account

{

#pragma db not_null
shared_ptr<person> holder_;

g

The NULL semantics can also be specified on the per-type basis (Section 12.3.3,
['null_/not_null__"). If both a type and a member hawell /not_null specifiers, then the
member specifier takes precedence. If a member specifier relaXgbthesemantics (that is, if
a member has theull specifier and the type has the explicdt_null specifier), then a

Revision 1.8, January 2012 C++ Object Persistence with ODB 159

12.4.5 default

warning is issued.

For a more detailed discussion of tiELL semantics for values, refer{to Section 7.3, "Pointers
[and NULL Value Semantic$". For a more detailed discussion ofNtlkeL semantics for object
pointers, refer tp Chapter 6, "Relationshjps".

12.4.5default

The default specifier specifies the database default value that should be used for a data
member. For example:

#pragma db object
class person

{

#pragma db default(-1)
int age_; /l Mapped to INT NOT NULL DEFAULT -1.

%

A default value can be the speamill keyword, abool literal true orfalse), an integer

literal, a floating point literal, a string literal, or an enumerator name. If you need to specify a
default value that is an expression, for example an SQL function call, then you can use the
options specifier|(Section 12.4.6pptions ") instead. For example:

enum gender {male, female, undisclosed};

#pragma db object
class person

{

#pragma db default(null)
odb::nullable<std::string> middle_; // DEFAULT NULL

#pragma db default(false)
bool married_; /I DEFAULT O/FALSE

#pragma db default(0.0)
float weight_; /l DEFAULT 0.0

#pragma db default("Mr")
string title_; /[DEFAULT 'Mr’

#pragma db default(undisclosed)
gender gender_; /I DEFAULT 2/'undisclosed’

160 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.5 default

#pragma db options("DEFAULT CURRENT_TIMESTAMP()")
date timestamp_; /I DEFAULT CURRENT_TIMESTAMPY()

%

Default values specified as enumerators are only supported for members that are mapped to an
ENUMor an integer type in the database, which is the case for the automatic mapping of C++
enums to suitable database types as performed by the ODB compiler. If you have mapped a C++
enum to another database type, then you should use a literal corresponding to that type to specify
the default value. For example:

enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person

{

#pragma db default("undisclosed")
gender gender_; /I DEFAULT 'undisclosed’

%

A default value can also be specified on the per-type Qasis (Section 1defaylt’). An
emptydefault specifier can be used to reset a default value that was previously specified on
the per-type basis. For example:

#pragma db value(std::string) default("")

#pragma db object
class person

{

#pragma db default()
std::string name_; // No default value.

%

A data member containing the object |id (Section 12.4dl;]") is automatically treated as not
having a default value even if its type specifies a default value.

Note also that default values do not affect the generated C++ code in any way. In particular, no
automatic initialization of data members with their default values is performed at any point. If
you need such an initialization, you will need to implement it yourself, for example, in your
persistent class constructors. The default values only affect the generated database schemas and,
in the context of ODB, are primarily useful for schema evolution.

Revision 1.8, January 2012 C++ Object Persistence with ODB 161

12.4.6 options

Additionally, thedefault specifier cannot be specified for view data members.

12.4.60ptions

The options specifier specifies additional column definition options that should be used for a
data member. For example:

#pragma db object
class person

{

#pragma db options("UNIQUE")
std::string email_; // Mapped to TEXT NOT NULL UNIQUE.
h

Options can also be specified on the per-type bpsis (Section 128tlens "). By default,
options are accumulating. That is, the ODB compiler first adds all the options specified for a
value type followed by all the options specified for a data member. To clear the accumulated
options at any point in this sequence you can use an @pptys specifier. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person

{

std::string first_; // TEXT NOT NULL COLLATE binary

#pragma db options("UNIQUE")
std::string last_; // TEXT NOT NULL COLLATE binary UNIQUE

#pragma db options()
std::string title_; // TEXT NOT NULL

#pragma db options() options("UNIQUE")
std::string email_; // TEXT NOT NULL UNIQUE
h

ODB provides dedicated specifiers for specifying column types (Section 12yp8,"), NULL
constraints [(Section 12.4.4,ndll /not null "), and default values| (Section 12.4.5,
['default ™). For ODB to function correctly these specifiers should always be used instead of
the opaqueptions specifier for these components of a column definition.

Note also that theptions specifier cannot be specified for view data members.

162 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.7 column (object, composite value)

12.4.7column (object, composite value)

Thecolumn specifier specifies the column name that should be used to store a data member of a
persistent class or composite value type in a relational database. For example:

#pragma db object
class person

{

#pragma db id column("person_id")
unsigned long id_;

%

For a member of a composite value type,ablemn specifier specifies the column name prefix.
Refer td Section 7.2.1, "Composite Value Column and Table Names" for details.

If the column name is not specified, it is derived from the member’'s so-called public name. A
public member name is obtained by removing the common data member name decorations, such
as leading and trailing underscores, rineprefix, etc.

12.4.8column (view)

The column specifier can be used to specify the associated object data member, the potentially
qualified column name, or the column expression for a data member of a view class. For more
information, refer tp Section 9.1, "Object Vieyws" and Section 9.2, "Table Vliews".

12.4.9transient

The transient specifier instructs the ODB compiler not to store a data member in the
database. For example:

#pragma db object
class person

{
date born_;

#pragma db transient
unsigned short age_; // Computed from born_.

%

This pragma is usually used on computed members, pointers and references that are only mean-
ingful in the application’s memory, as well as utility members such as mutexes, etc.

Revision 1.8, January 2012 C++ Object Persistence with ODB 163

12.4.10 readonly

12.4.10readonly

Thereadonly specifier specifies that a data member of an object or composite value type is
read-only. Changes to a read-only data member are ignored when updating the database state of
an object|(Section 3.9, "Updating Persistent Objects") containing such a member. Since views are
read-only, it is not necessary to use this specifier for view data members. Oblect id |(Section
and inverse[(Section 12.4.1InVerse ") data members are automatically treated

as read-only and must not be explicitly declared as such. For example:

#pragma db object
class person

{

#pragma db readonly
date born_;

g

Besides simple value members, object pointer, container, and composite value members can also
be declared read-only. A change of a pointed-to object is ignored when updating the state of a
read-only object pointer. Similarly, any changes to the number or order of elements or to the
element values themselves are ignored when updating the state of a read-only container. Finally,
any changes to the members of a read-only composite value type are also ignored when updating
the state of such a composite value.

ODB automatically treatxonst data members as read-only. For example, the following
person object is equivalent to the above declaration for the database persistence purposes:

#pragma db object
class person

{

const date born_; // Automatically read-only.

%

When declaring an object pointesnst , make sure to declare the pointeicaast rather than
(or in addition to) the object itself. For example:

#pragma db object
class person

{

const person* father_; // Read-write pointer to a read-only object.
person* const mother_; // Read-only pointer to a read-write object.

%

164 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.11 inverse

Note that in case of a wrapper type (Section 7.3, "Pointerblaihd Value Semantic$"), both the
wrapper and the wrapped type mustcoast in order for the ODB compiler to automatically
treat the data member as read-only. For example:

#pragma db object
class person

{

const std:;:auto_ptr<const date> born_;

%

Read-only members are useful when dealing with asynchronous changes to the state of a data
member in the database which should not be overwritten. In other cases, where the state of a data
member never changes, declaring such a member read-only allows ODB to perform more effi-
cient object updates. In such cases, however, it is conceptually more correct to declare such a data
member agonst rather than as read-only.

Note that it is also possible to declare composite value types (Section 1&a8dhrly ") as
well as whole object$ (Section 12.1./eddonly ") as read-only.

12.4.11inverse

Theinverse specifier specifies that a data member of an object pointer or a container of object

pointers type is an inverse side of a bidirectional object relationship. The single required argu-
ment to this specifier is the corresponding data member name in the referenced object. For
example:

using std::trl::shared_ptr;
using std::trl::weak_ptr;

class person;

#pragma db object pointer(shared_ptr)
class employer

{
std::vector<shared_ptr<person> > employees_;
3

#pragma db object pointer(shared_ptr)
class person

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 165

12.4.12 version

#pragma db inverse(employee)
weak_ptr<employer> employer_;

%

An inverse member does not have a corresponding column or, in case of a container, table in the
resulting database schema. Instead, the column or table from the referenced object is used to
retrieve the relationship information. Only ordered and set containers can be used for inverse
members. If an inverse member is of an ordered container type, it is automatically marked as
unordered| (Section 12.4.13jfordered ").

For a more detailed discussion of inverse members, reffer to Section 6.2, "Bidirectional Relation-

[shipsf.
12.4.12version

Theversion specifier specifies that the data member stores the object version used to support
optimistic concurrency. If a class has a version data member, then it must also be declared as
having the optimistic concurrency model using thgtimistic pragma [(Section 12.1.%,
['optimistic "). For example:

#pragma db object optimistic
class person

{

#pragma db version
unsigned long version_;

%

A version member must be of an integral C++ type and must map to an integer or similar
database type. Note also that object versions are not reused. If you have a high update frequency,
then care must be taken not to run out of versions. In such situations, using
unsigned long long as the version type is a safe choice.

For a more detailed discussion of optimistic concurrency, refér to Chapter 11, "Optimistic

12.4.13unordered

Theunordered specifier specifies that a member of an ordered container type should be stored
unordered in the database. The database table for such a member will not contain the index
column and the order in which elements are retrieved from the database may not be the same as
the order in which they were stored. For example:

166 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.14 table

#pragma db object
class person

{

#pragma db unordered
std::vector<std::string> nicknames_;

%

For a more detailed discussion of ordered containers and their storage in the database, refer to
[Section 5.1, "Ordered Containgrs".

12.4.14table

The table specifier specifies the table name that should be used to store the contents of a
container member. For example:

#pragma db object
class person

{

#pragma db table("nicknames")
std::vector<std::string> nicknames_;

%

If the table name is not specified, then the container table name is constructed by concatenating
the object’s table name, underscore, and the public member name. The public member name is
obtained by removing the common member name decorations, such as leading and trailing under-
scores, than_ prefix, etc. In the example above, without thble specifier, the container’s

table name would have beparson_nicknames

Thetable specifier can also be used for members of composite value types. In this case it spec-
ifies the table name prefix for container members inside the composite value type. Refer to
[Section 7.2.1, "Composite Value Column and Table Ngmes" for details.

The container table name can be qualified with a database schema, for example:

#pragma db object
class person

{

#pragma db table("extras.nicknames")
std::vector<std::string> nicknames_;

%

Revision 1.8, January 2012 C++ Object Persistence with ODB 167

12.4.15 index_type

For more information on database schemas and the format of the qualified names|_refer o Section
[12.1.8, 'schema}

12.4.15index_type

Theindex_type specifier specifies the native database type that should be used for an ordered
container’s index column of a data member. The semanticsl@X_type are similar to those

of thetype specifier |(Section 12.4.3type "). The native database type is expected to be an
integer type. For example:

#pragma db object
class person

{

#pragma db index_type("SMALLINT UNSIGNED")
std::vector<std::string> nicknames_;

3
12.4.16key type

The key _type specifier specifies the native database type that should be used for a map
container’'s key column of a data member. The semantiksyoftype are similar to those of
thetype specifier|(Section 12.4.3type "). For example:

#pragma db object
class person

{

#pragma db key_type("INT UNSIGNED")
std::map<unsigned short, float> age_weight_map_;

3
12.4.17value_type

The value_type specifier specifies the native database type that should be used for a
container’s value column of a data member. The semantica# type are similar to those
of thetype specifier|(Section 12.4.3type "). For example:

168 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.18 value_null/ivalue_not_null

#pragma db object
class person

{

#pragma db value_type("VARCHAR(255)")
std::vector<std::string> nicknames_;

%

Thevalue_null andvalue_not_null (Section 12.4.18,
['value null /value not null ") specifiers can be used to control the NULL semantics of
a value column.

12.4.18value _null /value _not_null

The value_null andvalue_not_null specifiers specify that a container’s element value
for a data member can or cannot NELL, respectively. The semantics wlue null and
value_not_null are similar to those of thaull andnot_null specifiers|(Section 12.4.4,

['null_/not null). For example:

using std::trl::shared_ptr;

#pragma db object
class person

{
=

#pragma db object
class account

{

#pragma db value_not_null
std::vector<shared_ptr<person> > holders_;

%

For set and multiset containers (Section 5.2, "Set and Multiset Conthiners") the element value is
automatically treated as not allowingNaJLL value.

12.4.19id_options

Theid_options specifier specifies additional column definition options that should be used
for a container’s id column of a data member. For example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 169

12.4.20 index_options

#pragma db object
class person

{

#pragma db id options("COLLATE binary")
std::string name_;

#pragma db id_options("COLLATE binary")
std::vector<std::string> nicknames_;

%

The semantics afi_options are similar to those of thaptions specifier [(Section 12.4.6,

[‘options 7).
12.4.20index_options

The index_options specifier specifies additional column definition options that should be
used for a container’s index column of a data member. For example:

#pragma db object
class person

{

#pragma db index_options("ZEROFILL")
std::vector<std::string> nicknames_;

g

The semantics oindex_options are similar to those of theptions specifier [[Sectidn
[12.4.6, 'bptions ").

12.4.21key options

Thekey_options specifier specifies additional column definition options that should be used
for a container’s key column of a data member. For example:

#pragma db object
class person

{

#pragma db key_options("COLLATE binary")
std::map<std::string, std::string> properties_;

%

170 C++ Object Persistence with ODB Revision 1.8, January 2012

12.4.22 value_options

The semantics diey_options are similar to those of theptions specifier |(Section 12.4.5,

"options).

12.4.22value_options

The value_options specifier specifies additional column definition options that should be
used for a container’s value column of a data member. For example:

#pragma db object
class person

{

#pragma db value_options("COLLATE binary")
std::set<std::string> nicknames_;

%

The semantics ofalue_options are similar to those of theptions specifier [[Sectidn
[12.4.6, bptions).

12.4.23id_column

Theid_column specifier specifies the column name that should be used to store the object id in
a container’s table for a data member. The semantics ocblumn are similar to those of the
column specifier|(Section 12.4.7¢6lumn "). For example:

#pragma db object
class person

{

#pragma db id_column("person_id")
std::vector<std::string> nicknames_;

%

If the column name is not specified, thaject_id is used by default.

12.4.24index_column

The index_column specifier specifies the column name that should be used to store the
element index in an ordered container's table for a data member. The semantics of
index_column are similar to those of thelumn specifier [(Section 12.4.7¢68lumn). For
example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 171

12.4.25 key_column

#pragma db object
class person

{

#pragma db index_column("nickname_number")
std::vector<std::string> nicknames_;

%

If the column name is not specified, thadex is used by default.

12.4.25key column

Thekey_column specifier specifies the column name that should be used to store the key in a
map container’s table for a data member. The semantiesyotolumn are similar to those of
thecolumn specifier |(Section 12.4.7¢8lumn "). For example:

#pragma db object
class person

{

#pragma db key_ column("age")
std::map<unsigned short, float> age_weight_map_;

h
If the column name is not specified, tHay is used by default.
12.4.26value_column

The value_column specifier specifies the column name that should be used to store the
element value in a container’s table for a data member. The semant@si@fcolumn are
similar to those of theolumn specifier [(Section 12.4.7¢8lumn "). For example:

#pragma db object
class person

{

#pragma db value_column("weight")
std::map<unsigned short, float> age_weight_map_;

%

If the column name is not specified, thealue is used by default.

172 C++ Object Persistence with ODB Revision 1.8, January 2012

12.5 Namespace Pragmas

12.5 Namespace Pragmas

A pragma with thenamespace qualifier describes a C++ namespace. The qualifier can be
optionally followed, in any order, by one or more specifiers summarized in the table below:

Specifier Summary Section

schema | database schema for persistent classes inside a nam

12.5.1schema

The schema specifier specifies a database schema that should be used for persistent classes
inside a namespace. For more information on specifying a database schema [refer tb Section
[12.1.8, schema"}

12.6 C++ Compiler Warnings

When a C++ header file defining persistent classes and containing ODB pragmas is used to build
the application, the C++ compiler may issue warnings about pragmas that it doesn’t recognize.
There are several ways to deal with this problem. The easiest is to disable such warnings using
one of the compiler-specific command line options or warning control pragmas. This method is
described in the following sub-section for popular C++ compilers.

There are also several C++ compiler-independent methods that we can employ. The first is to use
the PRAGMA_DBmacro, defined in<odb/core.hxx> , instead of using#pragma db

directly. This macro expands to the ODB pragma when compiled with the ODB compiler and to
an empty declaration when compiled with other compilers. The following example shows how
we can use this macro:

#include <odb/core.hxx>

PRAGMA_DB(object)
class person

{

PRAGMA_DB(id)
unsigned long id_;

%

An alternative to using th€RAGMA DBnacro is to group thépragma db directives in
blocks that are conditionally included into compilation only when compiled with the ODB
compiler. For example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 173

12.6.1 GNU C++

class person

{

unsigned long id_;
3
#ifdef ODB_COMPILER

pragma db object(person)

pragma db member(person::id) id
#endif

The disadvantage of this approach is that it can quickly become overly verbose when positioned
pragmas are used.

12.6.1 GNU C++

GNU g++ does not issue warnings about unknown pragmas unless requested wittalthe
command line option. To disable only the unknown pragma warning, we can add the
-Wno-unknown-pragmas option afterWall , for example:

g++ -Wall -Wno-unknown-pragmas ...

12.6.2 Visual C++

Microsoft Visual C++ issues an unknown pragma warning (C4068) at warning level 1 or higher.
This means that unless we have disabled the warnings altogether (level 0), we will see this
warning.

To disable this warning via the compiler command line, we can add/t4®68 C++ compiler
option in Visual Studio 2008 and earlier. In Visual Studio 2010 there is now a special GUI field
where we can enter warning numbers that should be disabled. Simply enter 4068 into this field.

We can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person

{

#pragma db id

174 C++ Object Persistence with ODB Revision 1.8, January 2012

12.6.3 Sun C++

unsigned long id_;

%

#pragma warning (pop)

12.6.3 Sun C++

The Sun C++ compiler does not issue warnings about unknown pragmas unlessothew?2
option is specified. To disable only the unknown pragma warning we can add the
-erroff=unknownpragma option anywhere on the command line, for example:

CC +w -erroff=unknownpragma ...

12.6.4 IBM XL C++

IBM XL C++ issues an unknown pragma warning (1540-1401) by default. To disable this
warning we can add thgsuppress=1540-1401 command line option, for example:

XIC -qsuppress=1540-1401 ...

12.6.5 HP aC++

HP aC++ (aCC) issues an unknown pragma warning (2161) by default. To disable this warning
we can add theW2161 command line option, for example:

aCC +wz1e1 ...

Revision 1.8, January 2012 C++ Object Persistence with ODB 175

PART Il DATABASE SYSTEMS

PART Il DATABASE SYSTEMS

Part Il covers topics specific to the database system implementations and their support in ODB.
In particular, it describes the system-spedifatabase classes as well as the default mapping
between basic C++ value types and native database types. Part Il consists of the following chap-
ters.

13 [MySOL Databade

14 |SQLite Database

15 |PostgreSQL Databdse

16 |Oracle Databage

17 [Microsoft SQL Server Databgse

176 C++ Object Persistence with ODB Revision 1.8, January 2012

13 MySQL Database

13 MySQL Database

To generate support code for the MySQL database you will need to pass the
"--database mysql " (or "-d mysqgl ") option to the ODB compiler. Your application will

also need to link to the MySQL ODB runtime libraijpgdb-mysqgl). All MySQL-specific

ODB classes are defined in tbdb::mysql namespace.

13.1 MySQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and MySQL
database types. This mapping can be customized on the per-type and per-member basis using the

ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type MySQL Type Default NULL Semantics
bool TINYINT(2) NOT NULL
char TINYINT NOT NULL
signed char TINYINT NOT NULL
unsigned char TINYINT UNSIGNED | NOT NULL
short SMALLINT NOT NULL
unsigned short SMALLINT UNSIGNED| NOT NULL
int INT NOT NULL
unsigned int INT UNSIGNED NOT NULL
long BIGINT NOT NULL
unsigned long BIGINT UNSIGNED NOT NULL
long long BIGINT NOT NULL
unsigned long long BIGINT UNSIGNED NOT NULL
float FLOAT NOT NULL
double DOUBLE NOT NULL
std::string TEXT/VARCHAR(255) | NOT NULL

Revision 1.8, January 2012

C++ Object Persistence with ODB

177

13.1 MySQL Type Mapping

Note that thestd::string type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this mealistring is
mapped to th¥ ARCHAR(255) MySQL type. Otherwise, it is mappedT&XT.

The MySQL ODB runtime library also provides support for mappingsttiestring type to
the MySQL CHAR NCHAR and NVARCHARtypes, as well as for mapping the

std::vector<char> , Std::vector<unsigned char> , char[N] , and
unsigned char[N] types to the MySQL BLOB types. However, these mappings are not
enabled by default (in particular, by defasid::vector will be treated as a container). To

enable the alternative mappings for these types we need to specify the database type explicitly
using thedb type pragma|(Section 12.4.3ybe "), for example:

#pragma db object
class object

{

#pragma db type("CHAR(2)")
std::string state_;

#pragma db type("BLOB")
std::vector<char> buf _;

#pragma db type("BLOB")
unsigned char[16] uuid_;

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object

{

buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapped to a suitable MySQL type.
Contiguous enumerations with the zero first enumerator are mapped to the NEpBOMype.

All other enumerations are mappedl or INT UNSIGNED. In both cases the defalNtJLL
semantics INOT NULL For example:

178 C++ Object Persistence with ODB Revision 1.8, January 2012

enum color {red, green, blue};

enum taste

{

bitter = 1, // Non-zero first enumerator.
sweet,

sour =4, /I Non-contiguous.

salty

3

#pragma db object
class object

{

color color_; // Mapped to ENUM ('red’, 'green’, 'blue’) NOT NULL.

taste taste_; // Mapped to INT UNSIGNED NOT NULL.
3

13.2 MySQL Database Class

The MySQLdatabase class has the following interface:

namespace odb

{

namespace mysq|

class database: public odb::database
{
public:
database (const char* user,
const char* passwd,
const char* db,
const char* host = 0,
unsigned int port = 0,
const char* socket = 0,
const char* charset = 0,
unsigned long client_flags = 0,
std::auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& passwd,
const std::string& db,
const std::string& host =™,
unsigned int port = 0,
const std::string* socket = 0,
const std::string& charset =",
unsigned long client_flags = 0,
std::auto_ptr<connection_factory> = 0);

database (const std::string& user,

Revision 1.8, January 2012 C++ Object Persistence with ODB

13.2 MySQL Database Class

179

13.2 MySQL Database Class

const std::string* passwd,

const std::string& db,

const std::string& host =",

unsigned int port = 0,

const std::string* socket = 0,

const std::string& charset =",
unsigned long client_flags = 0,
std:;:auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& passwd,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& socket,
const std::string& charset =",
unsigned long client_flags = 0,
std:;:auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string* passwd,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& socket,
const std::string& charset =",
unsigned long client_flags = 0,
std:;:auto_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
const std::string& charset =",
unsigned long client_flags = 0,
std:;:auto_ptr<connection_factory> = 0);

static void

print_usage (std::ostream&);

public:
const char*
user () const;

const char*
password () const;

const char*
db () const;

const char*

180 C++ Object Persistence with ODB

Revision 1.8, January 2012

13.2 MySQL Database Class

host () const;

unsigned int
port () const;

const char*
socket () const;

const char*
charset () const;

unsigned long
client_flags () const;

public:

connection_ptr

connection ();

%
}

}

You will need to include theodb/mysgl/database.hxx> header file to make this class
available in your application.

The overloadediatabase constructors allow us to specify MySQL database parameters that
should be used when connecting to the database. In My8Qll and an empty string are
treated as the same values for all the string parameters passptord andsocket .

Thecharset argument allows us to specify the client character set, that is, the character set in
which the application will encode its text data. Note that this can be different from the MySQL
server character set. If this argument is not specified or is empty, then the default MySQL client
character set is used, normadiyinl . Commonly used values for this argument lata1
(equivalent to Windows cp1252 and similar to 1ISO-8859-1)wf&l . For other possible values

as well as more information on character set support in MySQL, refer to the MySQL documenta-
tion.

The client_flags argument allows us to specify various MySQL client library flags. For
more information on the possible values, refer to the MySQL C API documentation. The
CLIENT_FOUND_ROW#g is always set by the MySQL ODB runtime regardless of whether it
was passed in thdient_flags argument.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

Revision 1.8, January 2012 C++ Object Persistence with ODB 181

13.3 MySQL Connection and Connection Factory

--user <login>
--password <password>
--database <name>
--host <host>

--port <integer>
--socket <socket>
--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the MySQL options out of the
argv array.

This constructor throws thedb::mysql::cli_exception exception if the MySQL option
values are missing or invalid. See section Section 13.4, "MySOL Exceptions" for more informa-
tion on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

Theconnection() function returns a pointer to the MySQL database connection encapsulated
by theodb::mysql::connection class. For more information onysql::connection
refer tg Section 13.3, "MySQL Connection and Connection Fagtory".

13.3 MySQL Connection and Connection Factory

Themysql::connection class has the following interface:

namespace odb

{

namespace mysq|

{

class connection: public odb::connection

{
public:
connection (database&);

182 C++ Object Persistence with ODB Revision 1.8, January 2012

13.3 MySQL Connection and Connection Factory

connection (database&, MYSQL™);
MYSQL*
handle ();
%

typedef details::shared_ptr<connection> connection_ptr;

}
}
For more information on thedb::connection interface, refer tp Section 3.5, "Connectipns".
The first overloadednysql::connection constructor establishes a new MySQL connection.

The second constructor allows us to creamm@nection instance by providing an already
connected native MySQL handle. Note that to@nection instance assumes ownership of
this handle. Thénandle() accessor returns the MySQL handle corresponding to the connec-
tion.

Themysql::connection_factory abstract class has the following interface:

namespace odb

{

namespace mysq|l

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

%
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in tbdb::mysql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

The two implementations of theonnection_factory interface provided by the MySQL
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/mysgl/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 183

13.3 MySQL Connection and Connection Factory

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closednewh&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace mysq|
{
class new_connection_factory: public connection_factory
{
public:
new_connection_factory ();
h
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace mysq|l

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0,
bool ping = true);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, MYSQL*);

}7
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

h
k

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open. Tfiag argument specifies whether the factory should validate
the connection before returning it to the caller.

184 C++ Object Persistence with ODB Revision 1.8, January 2012

13.3 MySQL Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, then the pool will close the excess connec-
tions.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thm_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Connection validation (theing argument) is useful if your application may experience long
periods of inactivity. In such cases the MySQL server may close network connections that have
been inactive for too long. If during connection validation the pool factory detects that the
connection has been terminated, it silently closes it and tries to find or create another connection
instead.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tth&tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set t and connection validation enabled. The following code fragment
shows how we can pass our own connection factory instance:

#include <odb/database.hxx>

#include <odb/mysql/database.hxx>
#include <odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
auto_ptr<odb::mysql::connection_factory> f (
new odb::mysql::connection_pool_factory (20));

Revision 1.8, January 2012 C++ Object Persistence with ODB 185

13.4 MySQL Exceptions

auto_ptr<odb::database> db (
new mysql::database (argc, argv, false, 0, f));

}

13.4 MySQL Exceptions

The MySQL ODB runtime library defines the following MySQL-specific exceptions:

namespace odb

{

namespace mysq|

{

class database_exception: odb::database_exception

{

public:
unsigned int
error () const;

const std::string&
sqlstate () const;

const std::string&
message () const;

virtual const char*
what () const throw ();

g

class cli_exception: odb::exception

{
public:
virtual const char*
what () const throw ();
3
}
}

You will need to include thecodb/mysqgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mysqgl::database_exception is thrown if a MySQL database operation fails.
The MySQL-specific error information is accessible via #reor() , sglstate() , and
message() functions. All this information is also combined and returned in a human-readable
form by thewhat() function.

186 C++ Object Persistence with ODB Revision 1.8, January 2012

13.5 MySQL Limitations

The odb::mysql::cli_exception is thrown by the command line parsing constructor of
the odb::mysql::database class if the MySQL option values are missing or invalid. The
what() function returns a human-readable description of an error.

13.5 MySQL Limitations

The following sections describe MySQL-specific limitations imposed by the current MySQL and
ODB runtime versions.

13.5.1 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. The only behaviors supported by MySQL are to either
check such constraints immediately (InnoDB engine) or to ignore foreign key constraints alto-

gether (all other engines). As a result, schemas generated by the ODB compiler for MySQL have
foreign key definitions commented out. They are retained only for documentation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 187

14 SQLite Database

14 SQLite Database

To generate support code for the SQLite database you will need to pass the
"--database sqlite " (or "-d sqlite ") option to the ODB compiler. Your application

will also need to link to the SQLite ODB runtime libraryib@db-sqlite). All
SQLite-specific ODB classes are defined indlde::sqlite namespace.

14.1 SQLite Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQLite
database types. This mapping can be customized on the per-type and per-member basis using the
ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type SQLite Type | Default NULL Semantics
bool INTEGER NOT NULL
char INTEGER NOT NULL
signed char INTEGER |NOT NULL
unsigned char INTEGER | NOT NULL
short INTEGER NOT NULL
unsigned short INTEGER | NOT NULL
int INTEGER NOT NULL
unsigned int INTEGER NOT NULL
long INTEGER NOT NULL
unsigned long INTEGER | NOT NULL
long long INTEGER | NOT NULL
unsigned long long INTEGER | NOT NULL
float REAL NOT NULL
double REAL NOT NULL
std::string TEXT NOT NULL

188

C++ Object Persistence with ODB

Revision 1.8, January 2012

14.2 SQLite Database Class

The SQLite ODB runtime library also provides support for mapping the
std::vector<char> , Std::vector<unsigned char> ,char[N] , and

unsigned char[N] types to the SQLite BLOB type. However, this mapping is not enabled
by default (in particular, by defaultd::vector will be treated as a container). To enable the
BLOB mapping for these types we need to specify the database type explicitly using the
db type pragmal(Section 12.4.3ybe "), for example:

#pragma db object
class object

{
#pragma db type("BLOB")
std::vector<char> buf_;
#pragma db type("BLOB")
unsigned char[16] uuid_;
3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object

{
buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapped to the SQIEGER
type with the defaulNULL semantics beinlOT NULL

Note also that SQLite only operates with signed integers and the largest value that an SQLite
database can store is a signed 64-bit integer. As a result, guesigned long and
unsigned long long values will be represented in the database as negative values.

14.2 SQLite Database Class

The SQLitedatabase class has the following interface:
namespace odb
{

namespace sqlite

class database: public odb::database

Revision 1.8, January 2012 C++ Object Persistence with ODB 189

14.2 SQLite Database Class

{
public:
database (const std::string& name,
int flags = SQLITE_ OPEN_READWRITE,
bool foreign_keys = true,
std::auto_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
int flags = SQLITE_ OPEN_READWRITE,
bool foreign_keys = true,
std:;:auto_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const std::string&
name () const;

int
flags () const;

public:
transaction
begin_immediate ();

transaction
begin_exclusive ();

public:

connection_ptr

connection ();

%
}

}

You will need to include theodb/sqlite/database.hxx> header file to make this class
available in your application.

The first constructor opens the specified SQLite databasendine argument is the database

file name to open. If this argument is empty, then a temporary, on-disk database is created. If this
argument is thememory: special value, then a temporary, in-memory database is created. The
flags argument allows us to specify SQLite opening flags. For more information on the possi-
ble values, refer to theglite3_open_v2() function description in the SQLite C API docu-
mentation. Theforeign_keys argument specifies whether foreign key constraints checking
should be enabled. S¢e Section 14.5.3, "Foreign Key Constraints" for more information on
foreign keys.

190 C++ Object Persistence with ODB Revision 1.8, January 2012

14.2 SQLite Database Class

The following example shows how we can opentdst.db database in the read-write mode
and create it if it does not exist:

auto_ptr<odb::database> db (
new odb::sqlite::database (
"test.db",
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));

The second constructor extracts the database parameters from the command line. The following
options are recognized:

--database <name>
--create

--read-only
--options-file <file>

By default, this constructor opens the database in the read-write 8QUETE _OPEN_READ-
WRITEflag). If the--create flag is specified, then the database file is created if it does not
already exist$QLITE_OPEN_CREATHag). If the--read-only flag is specified, then the
database is opened in the read-only mo8QLITE _OPEN_READONLYlag instead of
SQLITE_OPEN_READWRITE The --options-file option allows us to specify some or

all of the database options in a file with each option appearing on a separate line followed by a
space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the SQLite options out of the
argv array.

Theflags argument has the same semantics as in the first constructor. Flags from the command
line always override the corresponding values specified with this argument.

The second constructor throws tab::sqlite::cli_exception exception if the SQLite
option values are missing or invalid. $ee Section 14.4, "SOLite Exceptions" for more information
on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by the second constructor.

The last argument to both constructors is a pointer to the connection factory. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

Revision 1.8, January 2012 C++ Object Persistence with ODB 191

14.3 SQLite Connection and Connection Factory

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The begin_immediate() and begin_exclusive() functions are the SQLite-specific
extensions to the standandb::database::begin() function (se¢ Section 3.4, "Trangac-
ftions]). They allow us to start an immediaREGIN IMMEDIATE) and an exclusiveBEGIN
EXCLUSIVE SQLite transaction, respectively. For more information on the semantics of the
immediate and exclusive transactions, refer toBR&IN statement description in the SQLite
documentation.

The connection() function returns a pointer to the SQLite database connection encapsulated
by the odb::sqlite::connection class. For more information asglite::connec-
tion , refer tq Section 14.3, "SQLite Connection and Connection Fagctory".

14.3 SQLite Connection and Connection Factory

Thesqlite::connection class has the following interface:

namespace odb

{

namespace sqlite

{

class connection: public odb::connection

{

public:
connection (databaseg&, int extra_flags = 0);
connection (database&, sqlite3*);

transaction
begin_immediate ();

transaction
begin_exclusive ();

sqlite3*
handle ();
h

typedef details::shared_ptr<connection> connection_ptr;

}
}

For more information on thedb::connection interface, refer tp Section 3.5, "Connectipns".
The first overloadedqglite::connection constructor opens a new SQLite connection. The
extra_flags argument can be used to specify exgiite3 open_v2() flags that are
combined with the flags specified in trsglite::database constructor. The second
constructor allows us to createcannection instance by providing an already open native

192 C++ Object Persistence with ODB Revision 1.8, January 2012

14.3 SQLite Connection and Connection Factory

SQLite handle. Note that tl®nnection instance assumes ownership of this handle.

Thebegin_immediate() andbegin_exclusive() functions allow us to start an imme-

diate and an exclusive SQLite transaction on the connection, respectively. Their semantics are
equivalent to the corresponding functions defined instilée::database class [(Sectidn

[14.2, "SOLite Database Clags"). Thendle() accessor returns the SQLite handle correspond-

ing to the connection.

Thesqlite::connection_factory abstract class has the following interface:

namespace odb

{

namespace sqlite

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

h
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thedb::sqlite::database class constructors. The
connect() function is called whenever a database connection is requested.

The three implementations of tle®nnection_factory interface provided by the SQLite
ODB runtime library aresingle_connection_factory , hew_connection_factory ,
andconnection_pool_factory . You will need to include theodb/sglite/connec-
tion-factory.hxx> header file to make theonnection_factory interface and these
implementation classes available in your application.

Thesingle_connection_factory class creates a single connection that is shared between
all the threads in an application. If the connection is currently not in use, then it is returned to the
caller. Otherwise, the caller is blocked until the connection becomes available. The
single_connection_factory class has the following interface:

namespace odb

{

namespace sqlite

{

class single_connection_factory: public connection_factory

{

Revision 1.8, January 2012 C++ Object Persistence with ODB 193

14.3 SQLite Connection and Connection Factory

public:
single_connection_factory ();

protected:
class single_connection: public connection

{
public:

single_connection (database_type&);
single_connection (database_type&, MYSQL*);
h

typedef details::shared_ptr<single connection> single_connection_ptr;

virtual single_connection_ptr
create ();

h
h

The create() virtual function is called when the factory needs to create the connection. By
deriving from thesingle_connection_factory class and overriding this function we can
implement custom connection establishment and configuration.

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closednewh&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace sqlite
{
class new_connection_factory: public connection_factory
{
public:
new_connection_factory ();
h
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace sqlite

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

194 C++ Object Persistence with ODB Revision 1.8, January 2012

14.3 SQLite Connection and Connection Factory

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&, int extra_flags = 0);
pooled_connection (database_type&, sqlite3*);

}7
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

%
3

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, then the pool will close the excess connec-
tions.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If th_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

By default, connections created byew_connection_factory and connec-
tion_pool_factory enable the SQLite shared cache mode and use the unlock notify func-
tionality to aid concurrency. To disable the shared cache mode you can pass the

Revision 1.8, January 2012 C++ Object Persistence with ODB 195

14.4 SQLite Exceptions

SQLITE_OPEN_PRIVATECACHIHag when creating the database instance. For more informa-
tion on the shared cache mode refer to the SQLite documentation.

If you passNULL as the connection factory to one of tth&tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set b The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/sqlite/database.hxx>
#include <odb/sglite/connection-factory.hxx>

int
main (int argc, char* argv[])

{

auto_ptr<odb::sqlite::connection_factory> f (
new odb::sglite::connection_pool_factory (20));

auto_ptr<odb::database> db (
new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));

}

14.4 SQLite Exceptions

The SQLite ODB runtime library defines the following SQLite-specific exceptions:

namespace odb

{

namespace sqglite

{

class database_exception: odb::database_exception

{
public:
int
error () const

int
extended_error () const;

const std::string&
message () const;

virtual const char*
what () const throw ();

h

class cli_exception: odb::exception

{

196 C++ Object Persistence with ODB Revision 1.8, January 2012

14.5 SQLite Limitations

public:

virtual const char*

what () const throw ();

%
}

}

You will need to include theodb/sglite/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::sqlite::database_exception is thrown if an SQLite database operation
fails. The SQLite-specific error information is accessible via tlror()
extended_error() , andmessage() functions. All this information is also combined and

returned in a human-readable form by wieat() function.

Theodb::sqlite::cli_exception is thrown by the command line parsing constructor of
the odb::sqlite::database class if the SQLite option values are missing or invalid. The
what() function returns a human-readable description of an error.

14.5 SQLite Limitations

The following sections describe SQLite-specific limitations imposed by the current SQLite and
ODB runtime versions.

14.5.1 Query Result Caching

SQLite ODB runtime implementation does not perform query result ca¢hing (Section 4.4, |'Query
[Result}) even when explicitly requested. The SQLite APl supports interleaving execution of
multiple prepared statements on a single connection. As a result, with SQLite, it is possible to
have multiple uncached results and calls to other database functions do not invalidate them. The
only limitation of the uncached SQLite results is the unavailability ofrélsalt::size()

function. If you call this function on an SQLite query result, then the
odb::result_not_cached exception|(Section 3.13, "ODB Exceptigns") is always thrown.
Future versions of the SQLite ODB runtime library may add support for result caching.

14.5.2 Automatic Assignment of Object Ids

Due to SQLite API limitations, every automatically assigned objegt id (Section 124td, ")
should have th&NTEGER SQLite type. While SQLite will treat other integer type names (such
asINT, BIGINT , etc.) adNTEGER automatic id assignment will not work. By default, ODB
maps all C++ integral types tNNTEGER This means that the only situation that requires consid-
eration is the assignment of a custom database type usidf thpe pragma|(Section 12.4.3,

['type). For example:

Revision 1.8, January 2012 C++ Object Persistence with ODB 197

14.5.3 Foreign Key Constraints

#pragma db object
class person

{

[l#pragma db id auto type("INT") // Will not work.
[l#pragma db id auto type("INTEGER") // Ok.

#pragma db id auto /I Ok, Mapped to INTEGER.
unsigned int id_;

3
14.5.3 Foreign Key Constraints

By default the SQLite ODB runtime enables foreign key constraints checkRAGMA
foreign_keys=ON). You can disable foreign keys by passinglse as the
foreign_keys argument to one of thedb::sqlite::database constructors. Foreign
keys will also be disabled if the SQLite library is built without support for foreign keys
(SQLITE_OMIT_FOREIGN_KEYandSQLITE_OMIT_TRIGGERmacros) or if you are using
an SQLite version prior to 3.6.19, which does not support foreign key constraints checking.

If foreign key constraints checking is disabled or not available, then inconsistencies in object rela-

tionships will not be detected. Furthermore, usingettase_query() function (Section 3.10,
['Deleting Persistent Objecjs") to delete persistent objects that contain containers will not work
correctly. Container data for such objects will not be deleted.

When foreign key constraints checking is enabled, then you may get the "foreign key constraint
failed" error while re-creating the database schema. This error is due to bugs in the SQLite DDL
foreign keys support. The recommended work-around for this problem is to temporarily disable
foreign key constraints checking while re-creating the schema. The following code fragment
shows how this can be done:

#include <odb/connection.hxx>

#include <odb/transaction.hxx>
#include <odb/schema-catalog.hxx>

odb::database& db = ...

{

odb::connection_ptr ¢ (db.connection ());
c->execute ("PRAGMA foreign_keys=0OFF");
odb::transaction t (c->begin ());
odb::schema_catalog::create_schema (db);

t.commit ();

c->execute ("PRAGMA foreign_keys=ON");
}

198 C++ Object Persistence with ODB Revision 1.8, January 2012

14.5.4 Constraint Violations

Finally, ODB relies on standard SQL behavior which requires that foreign key constraints check-
ing is deferred until the transaction is committed. Default SQLite behavior is to check such
constraints immediately. As a result, when used with ODB, a custom database schema that
defines foreign key constraints must declare such constraifdEBERRABLE INITIALLY
DEFERREDPas shown in the following example. Schemas generated by the ODB compiler meet
this requirement automatically.

CREATE TABLE Employee (

employer INTEGER REFERENCES Employer(id)
DEFERRABLE INITIALLY DEFERRED);

14.5.4 Constraint Violations

Due to the granularity of the SQLite error codes, it is impossible to distinguish between the dupli-
cate primary key and other constraint violations. As a result, when making an object persistent,
the SQLite ODB runtime will translate all constraint violation errors to the
object_already_persistent exception|(Section 3.13, "ODB Exceptigns").

14.5.5 Sharing of Queries

As discussed in_Section 4.3, "Executing a Query", a query instance that does not have any
by-reference parameters is immutable and can be shared between multiple threads without
synchronization. Currently, the SQLite ODB runtime does not support this functionality. Future
versions of the library will remove this limitation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 199

15 PostgreSQL Database

15 PostgreSQL Database

To generate support code for the PostgreSQL database you will need to pass the
"--database pgsql " (or "-d pgsgl ") option to the ODB compiler. Your application will

also need to link to the PostgreSQL ODB runtime librdigodb-pgsgl). All Post-
greSQL-specific ODB classes are defined indtk::pgsql namespace.

ODB utilizes prepared statements extensively. Support for prepared statements was added in
PostgreSQL version 7.4 with the introduction of the messaging protocol version 3.0. For this
reason, ODB supports only PostgreSQL version 7.4 and later.

15.1 PostgreSQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and Post-
greSQL database types. This mapping can be customized on the per-type and per-member basis

using the ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type PostgreSQL Type | Default NULL Semanticg
bool BOOLEAN NOT NULL
char SMALLINT NOT NULL
signed char SMALLINT NOT NULL
unsigned char SMALLINT NOT NULL
short SMALLINT NULL NOT NULL
unsigned short SMALLINT NOT NULL
int INTEGER NOT NULL
unsigned int INTEGER NOT NULL
long BIGINT NOT NULL
unsigned long BIGINT NOT NULL
long long BIGINT NOT NULL
unsigned long long BIGINT NOT NULL
float REAL NOT NULL
double DOUBLE PRECISION| NOT NULL
std::string TEXT NOT NULL

200

C++ Object Persistence with ODB

Revision 1.8, January 2012

15.1 PostgreSQL Type Mapping

The PostgreSQL ODB runtime library also provides support for mappingtdtstring
type to the PostgreSQLCHAR and VARCHARtypes, as well as for mapping the

std::vector<char> , Std::vector<unsigned char> ,char[N] , and
unsigned char[N] types to the PostgreSQRYTEAtype. However, these mappings are not
enabled by default (in particular, by defasid::vector will be treated as a container). To

enable the alternative mappings for these types we need to specify the database type explicitly
using thedb type pragma|(Section 12.4.3ybe "), for example:

#pragma db object
class object

{

#pragma db type("CHAR(2)")
std::string state_;

#pragma db type("BYTEA")
std::vector<char> buf _;

#pragma db type("BYTEA")
unsigned char[16] uuid_;

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object

{

buffer buf_; // Mapped to BYTEA.
3

Additionally, by default, C++ enumerations are automatically mappdtNT&GER with the
defaultNULL semantics beinOT NULL

Note also that because PostgreSQL does not support unsigned integansjghed short ,
unsigned int , andunsigned long /unsigned long long C++ types are by default
mapped to th&MALLINT, INTEGER andBIGINT PostgreSQL types, respectively. The sign

bit of the value stored by the database for these types will contain the most significant bit of the
actual unsigned value being persisted.

Revision 1.8, January 2012 C++ Object Persistence with ODB 201

15.2 PostgreSQL Database Class

15.2 PostgreSQL Database Class

The PostgreSQdatabase class has the following interface:

namespace odb

{
namespace pgsql
{
class database: public odb::database
{
public:
database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host =",
unsigned int port = 0,
const std::string& extra_conninfo =",
std:;:auto_ptr<connection_factory> = 0);
database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host =",
const std::string& socket_ext =",
const std::string& extra_conninfo =",
std::auto_ptr<connection_factory> = 0);
database (const std::string& conninfo,
std:;:auto_ptr<connection_factory> = 0);
database (int& argc,
char* argv(],
bool erase = false,
const std::string& extra_conninfo =",
std:;:auto_ptr<connection_factory> = 0);
static void
print_usage (std::ostream&);
public:
const std::string&
user () const;
const std::string&
password () const;
const std::string&
db () const;
202 C++ Object Persistence with ODB

Revision 1.8, January 2012

15.2 PostgreSQL Database Class

const std::string&
host () const;

unsigned int
port () const;

const std::string&
socket_ext () const;

const std::string&
extra_conninfo () const;

const std::string&
conninfo () const;

public:

connection_ptr

connection ();

%
}

}

You will need to include theodb/pgsqgl/database.hxx> header file to make this class
available in your application.

The overloadedatabase constructors allow us to specify the PostgreSQL database parameters
that should be used when connecting to the databas@ofiheargument in the first constructor

is an integer value specifying the TCP/IP port number to connect to. A zero port number indicates
that the default port should be used. Boeket_ext argument in the second constructor is a
string value specifying the UNIX-domain socket file name extension.

The third constructor allows us to specify all the database parameters as a@nméo

string. All other constructors accept additional database connection parameters as the
extra_conninfo argument. For more information about the format ofcthreninfo string,

refer to thePQconnectdb() function description in the PostgreSQL documentation. In the
case ofextra_conninfo , all the database parameters provided in this string will take prece-
dence over those explicitly specified with other constructor arguments.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

--user <login> | --username <login>
--password <password>

--database <name> | --dbname <name>
--host <host>

--port <integer>

--options-file <file>

Revision 1.8, January 2012 C++ Object Persistence with ODB 203

15.3 PostgreSQL Connection and Connection Factory

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and thargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the PostgreSQL options out of
theargv array.

This constructor throws thedb::pgsqgl::cli_exception exception if the PostgreSQL
option values are missing or invalid. See segtion Section 15.4, "PostgreSOL Exceptions" for more
information on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance. Note that treonninfo() accessor returns a completnninfo string

which includes parameters that were explicitly specified with the various constructor arguments,
as well as the extra parameters passed in déR@a_conninfo argument. The
extra_conninfo() accessor will return theconninfo string as passed in the
extra_conninfo argument.

Theconnection() function returns a pointer to the PostgreSQL database connection encapsu-

lated by the odb::pgsqgl::connection class. For more information on
pgsql::connection , refer to[Section 15.3, "PostgreSQL Connection and Conneftion
[Factoryt.

15.3 PostgreSQL Connection and Connection Factory

Thepgsql::connection class has the following interface:

namespace odb

{

namespace pgsq|

{

class connection: public odb::connection

{

public:
connection (database&);
connection (database&, PGconn*);

204 C++ Object Persistence with ODB Revision 1.8, January 2012

15.3 PostgreSQL Connection and Connection Factory

PGconn*
handle ();

g

typedef details::shared_ptr<connection> connection_ptr;

}

}
For more information on thedb::connection interface, refer tp Section 3.5, "Connectipns".
The first overloade@gsql::connection constructor establishes a new PostgreSQL connec-

tion. The second constructor allows us to createom@nection instance by providing an
already connected native PostgreSQL handle. Note thatatheection instance assumes
ownership of this handle. Thendle() accessor returns the PostgreSQL handle corresponding
to the connection.

Thepgsql::connection_factory abstract class has the following interface:

namespace odb

{

namespace pgsql

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

%
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thdb::pgsql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

The two implementations of tlewnnection_factory interface provided by the PostgreSQL
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/pgsgl/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closedne®wh&onnec-
tion_factory class has the following interface:

Revision 1.8, January 2012 C++ Object Persistence with ODB 205

15.3 PostgreSQL Connection and Connection Factory

namespace odb

{

namespace pgsql

{

class new_connection_factory: public connection_factory
{

public:

new_connection_factory ();

h
3

The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace pgsql

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, PGconn®);

}7
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

b
k

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

206 C++ Object Persistence with ODB Revision 1.8, January 2012

15.4 PostgreSQL Exceptions

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thim_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tth&tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set b The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/pgsgl/database.hxx>
#include <odb/pgsgl/connection-factory.hxx>

int
main (int argc, char* argv[])

{

auto_ptr<odb::pgsql::connection_factory> f (
new odb::pgsql::connection_pool_factory (20));

auto_ptr<odb::database> db (
new pgsql::database (argc, argv, false, ", f));

}

15.4 PostgreSQL Exceptions

The PostgreSQL ODB runtime library defines the following PostgreSQL-specific exceptions:

namespace odb

{

namespace pgsq|

{

class database_exception: odb::database_exception

{
public:

Revision 1.8, January 2012 C++ Object Persistence with ODB 207

15.5 PostgreSQL Limitations

const std::string&
message () const;

const std::string&
sqlstate () const;

virtual const char*
what () const throw ();

k

class cli_exception: odb::exception

{

public:

virtual const char*

what () const throw ();

3
}

}

You will need to include thecodb/pgsgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::pgsqgl::database_exception is thrown if a PostgreSQL database operation
fails. The PostgreSQL-specific error information is accessible viantessage() and
sqlstate() functions. All this information is also combined and returned in a human-readable
form by thewhat() function.

The odb::pgsql::cli_exception is thrown by the command line parsing constructor of
the odb::pgsql::database class if the PostgreSQL option values are missing or invalid.
Thewhat() function returns a human-readable description of an error.

15.5 PostgreSQL Limitations

The following sections describe PostgreSQL-specific limitations imposed by the current Post-
greSQL and ODB runtime versions.

15.5.1 Query Result Caching

The PostgreSQL ODB runtime implementation will always return a cached query[result {Section
[4.4, "Query Result") even when explicitly requested not to. This is a limitation of the PostgreSQL
client library (ibpg) which does not support uncached (streaming) query results.

208 C++ Object Persistence with ODB Revision 1.8, January 2012

15.5.2 Foreign Key Constraints

15.5.2 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. Default PostgreSQL behavior is to check such

constraints immediately. As a result, when used with ODB, a custom database schema that
defines foreign key constraints must declare such constrainidlHALLY DEFERRED , as

shown in the following example. Schemas generated by the ODB compiler meet this requirement
automatically.

CREATE TABLE Employee (

employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);

15.5.3 Unique Constraint Violations

Due to the granularity of the PostgreSQL error codes, it is impossible to distinguish between the
duplicate primary key and other unique constraint violations. As a result, when making an object
persistent, the PostgreSQL ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception|(Section 3.13, "ODB Exceptigns").

15.5.4 Date-Time Format

ODB expects the PostgreSQL server to use integers as a binary format for the date-time types,
which is the default for most PostgreSQL configurations. When creating a connection, ODB
examines theinteger_datetimes PostgreSQL server parameter and if itfadse
odb::pgsql::database_exception is thrown. You may check the value of this parame-

ter for your server by executing the following SQL query:

SHOW integer_datetimes
15.5.5 Timezones

ODB does not currently support the PostgreSQL date-time types with timezone information.

15.5.6NUMERICType Support

Support for the PostgreSQIUUMERICtype is limited to providing a binary buffer containing the
binary representation of the value. For more information on the binary format used to store
NUMERICvalues refer to the PostgreSQL documentation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 209

16 Oracle Database

16 Oracle Database

To generate support

"--database oracle

" (or "-d oracle
will also need to link to the Oracle ODB runtime librarfibddb-oracle

code for

Oracle-specific ODB classes are defined indtib::oracle

16.1 Oracle Type Mapping

the Oracle database you will
") option to the ODB compiler. Your application

namespace.

need

). All

to pass

the

The following table summarizes the default mapping between basic C++ value types and Oracle

database types. This mapping can be customized on the per-type and per-member basis using the

ODB Pragma Language (Chapter 12, "ODB Pragma Language").

C++ Type Oracle Type Default NULL Semantics
bool NUMBER(1) NOT NULL
char NUMBER(3) NOT NULL
signed char NUMBER(3) NOT NULL
unsigned char NUMBER(3) NOT NULL
short NUMBER(5) NOT NULL
unsigned short NUMBER(5) NOT NULL
int NUMBER(10) NOT NULL
unsigned int NUMBER(10) NOT NULL
long NUMBER(19) NOT NULL
unsigned long NUMBER(20) NOT NULL
long long NUMBER(19) NOT NULL
unsigned long long NUMBER(20) NOT NULL
float BINARY_FLOAT |NOT NULL
double BINARY_DOUBLE NOT NULL
std::string VARCHAR2(512) | NULL

210

C++ Object Persistence with ODB

Revision 1.8, January 2012

16.1 Oracle Type Mapping

In Oracle empty?ARCHAR2and NVARCHARtrings are represented BSLL values. As a
result, in the generated schema, columns of these types are always decldtdd asven if

explicitly declared asNOT NULL with the db not_null pragma [(Section 12.4.4),
['null/not null ").

The Oracle ODB runtime library also provides support for mappingtthestring type to
the OracleCHAR NCHARNVARCHAR2CLOBand NCLOBtypes, as well as for mapping the
std::vector<char> , Std::vector<unsigned char> , char[N] ,and

unsigned char[N] types to the OraclBLOBandRAWypes. However, these mappings are
not enabled by default (in particular, by defastt::vector will be treated as a container).

To enable the alternative mappings for these types we need to specify the database type explicitly
using thedb type pragma|(Section 12.4.3ybe "), for example:

#pragma db object
class object

{
#pragma db type ("CLOB")
std::string str_;

#pragma db type("BLOB")
std::vector<char> buf _;

#pragma db type("RAW(16)")
unsigned char[16] uuid_;
3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object

class object

{

buffer buf_; // Mapped to BLOB.
3

Additionally, by default, C++ enumerations are automatically mapp&tJtdBER(10) with the
defaultNULL semantics beinOT NULL

Revision 1.8, January 2012 C++ Object Persistence with ODB 211

16.2 Oracle Database Class

16.2 Oracle Database Class

The Oracledatabase class encapsulates the OCI environment handle as well as the database
connection string and user credentials that are used to establish connections to the database. It has
the following interface:

namespace odb

{

namespace oracle

{

class database: public odb::database

{

public:

database (const std::string& user,

const std::string& password,
const std::string& db,
ub2 charset = 0,
ub2 ncharset = 0,
OCIEnv* environment = 0,
std:;:auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& service,
const std::string& host =",
unsigned int port = 0,
ub2 charset =0,
ub2 ncharset = 0,
OCIEnv* environment = 0,
std:;:auto_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
ub2 charset = 0,
ub2 ncharset = 0,
OCIENnv* environment = 0,
std:;:auto_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const std::string&
user () const;

const std::string&
password () const;

const std::string&

212 C++ Object Persistence with ODB Revision 1.8, January 2012

16.2 Oracle Database Class

db () const;

const std::string&
service () const;

const std::string&
host () const;

unsigned int
port () const;

ub2
charset () const;

ub2
ncharset () const;

OCIEnv*
environment ();

public:

connection_ptr

connection ();

%
}

}

You will need to include theodb/oracle/database.hxx> header file to make this class
available in your application.

The overloadedlatabase constructors allow us to specify the Oracle database parameters that
should be used when connecting to the databasedi@r@gument in the first constructor is a
connection identifier that specifies the database to connect to. For more information on the format
of the connection identifier, refer to the Oracle documentation.

The second constructor allows us to specify the individual components of a connection identifier
as theservice , host , andport arguments. If thé@ost argument is empty, then localhost is
used by default. Similarly, if thgort argument is zero, then the default port is used.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

--user <login>
--password <password>
--database <connect-id>
--service <name>

--host <host>

--port <integer>
--options-file <file>

Revision 1.8, January 2012 C++ Object Persistence with ODB 213

16.2 Oracle Database Class

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value. Note that
it is invalid to specify the--database option together with--service , --host , or

--port options.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and theargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the Oracle options out of the
argv array.

This constructor throws thedb::oracle::cli_exception exception if the Oracle option
values are missing or invalid. See section Section 16.4, "Oracle Excgptions” for more information
on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

Additionally, all the constructors have tlsbarset , ncharset , andenvironment argu-

ments. Thecharset argument specifies the client-side database character encoding. Character
data corresponding to tleHAR VARCHARZandCLOBtypes will be delivered to and received
from the application in this encoding. Similarly, tmeharset argument specifies the
client-side national character encoding. Character data corresponding RCH®R NVAR-
CHARZ2 andNCLOBtypes will be delivered to and received from the application in this encoding.
For the complete list of available character encoding values, refer to the Oracle documentation.
Commonly used encoding values 8#& (UTF-8),31 (ISO-8859-1), and000 (UTF-16). If the
database character encoding is not specified, theNIltBe LANGenvironment/registry variable

is used. Similarly, if the national character encoding is not specified, th&iLBIeNCHAReNVi-
ronment/registry variable is used. For more information on character encodings, refer to the
OCIEnvNIsCreate() function in the Oracle Call Interface (OCI) documentation.

The environment argument allows us to provide a custom OCI environment handle. If this
argument is noNULL, then the passed handle is used in all the OCI function calls made by this
database class instance. Note also that tte#abase instance does not assume ownership of
the passed environment handle and this handle should be valid for the lifetimelafatbese
instance. If a custom environment handle is used, thechdmset andncharset arguments

have no effect.

The last argument to all of the constructors is a pointer to a connection factory. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

214 C++ Object Persistence with ODB Revision 1.8, January 2012

16.3 Oracle Connection and Connection Factory

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The connection() function returns a pointer to the Oracle database connection encapsulated
by the odb::oracle::connection class. For more information aracle::connec-
tion , refer tq Section 16.3, "Oracle Connection and Connection Fdctory".

16.3 Oracle Connection and Connection Factory

Theoracle::connection class has the following interface:

namespace odb

{

namespace oracle

{

class connection: public odb::connection

{
public:
connection (database&);
connection (database&, OCISvcCix?*);

OCISvcCix*
handle ();

OCIError*
error_handle ();

details::buffer&
lob_buffer ();

h

typedef details::shared_ptr<connection> connection_ptr;

}

}
For more information on thedb::connection interface, refer tp Section 3.5, "Connectipns".
The first overloadearacle::connection constructor creates a new OCI service context.

The OCI statement caching is enabled for the underlying session while the OCI connection
pooling and session pooling are not used. The second constructor allows us to @reatra

tion instance by providing an already connected Oracle service context. Note that the
connection instance assumes ownership of this handle.hemelle() accessor returns the

OCI service context handle associated withcbrenection instance.

An OCI error handle is allocated for eachbnnection instance and is available via the
error_handle() accessor function.

Revision 1.8, January 2012 C++ Object Persistence with ODB 215

16.3 Oracle Connection and Connection Factory

Additionally, eachconnection instance maintains a large object (LOB) buffer. This buffer is
used by the Oracle ODB runtime as an intermediate storage for piecewise handling of LOB data.
By default, the LOB buffer has zero initial capacity and is expanded to 4096 bytes when the first
LOB operation is performed. If your application requires a bigger or smaller LOB buffer, you can
specify a custom capacity using tbe_buffer() accessor.

Theoracle::connection_factory abstract class has the following interface:

namespace odb

{

namespace oracle

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr
connect () = 0;

%
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thedb::oracle::database class constructors. The
connect() function is called whenever a database connection is requested.

The two implementations of theonnection_factory interface provided by the Oracle
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/oracle/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closednewh&onnec-
tion_factory class has the following interface:

namespace odb

{

namespace oracle

{

class new_connection_factory: public connection_factory

{

public:
new_connection_factory ();
h
h

216 C++ Object Persistence with ODB Revision 1.8, January 2012

16.3 Oracle Connection and Connection Factory

The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace oracle

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, OCISvcCtx*);

}7
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

b
k

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

Revision 1.8, January 2012 C++ Object Persistence with ODB 217

16.4 Oracle Exceptions

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If th_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tth&tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set b The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/oracle/database.hxx>
#include <odb/oracle/connection-factory.hxx>

int
main (int argc, char* argv[])

{

auto_ptr<odb::oracle::connection_factory> f (
new odb::oracle::connection_pool_factory (20));

auto_ptr<odb::database> db (
new oracle::database (argc, argv, false, 0, 0, 0, f));

}

16.4 Oracle Exceptions

The Oracle ODB runtime library defines the following Oracle-specific exceptions:

namespace odb

{

namespace oracle

class database_exception: odb::database_exception

{
public:
class record

{
public:
sh4
error () const;

const std::string&
message () const;

g

218 C++ Object Persistence with ODB Revision 1.8, January 2012

16.4 Oracle Exceptions

typedef std::vector<record> records;

typedef records::size_type size_type;
typedef records::const_iterator iterator;

iterator
begin () const;

iterator
end () const;

size type
size () const;

virtual const char*
what () const throw ();

k

class cli_exception: odb::exception

{

public:

virtual const char*
what () const throw ();

g

class invalid_oci_handle: odb::exception

{

public:

virtual const char*

what () const throw ();

%
}

}

You will need to include theodb/oracle/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::oracle::database_exception is thrown if an Oracle database operation
fails. The Oracle-specific error information is stored as a series of records, each containing the
error code as a signed 4-byte integer and the message string. All this information is also
combined and returned in a human-readable form bwlhiag() function.

Theodb::oracle::cli_exception is thrown by the command line parsing constructor of
the odb::oracle::database class if the Oracle option values are missing or invalid. The
what() function returns a human-readable description of an error.

Revision 1.8, January 2012 C++ Object Persistence with ODB 219

16.5 Oracle Limitations

The odb::oracle::invalid_oci_handle is thrown if an invalid handle is passed to an
OCI function or if an OCI function was unable to allocate a handle. The former normally indi-
cates a programming error while the latter indicates an out of memory conditiomha@t(
function returns a human-readable description of an error.

16.5 Oracle Limitations

The following sections describe Oracle-specific limitations imposed by the current Oracle and
ODB runtime versions.

16.5.1 Identifier Truncation

Oracle limits the length of database identifiers (table, column, etc., names) to 30 characters. The
ODB compiler automatically truncates any identifier that is longer than 30 characters. This,
however, can lead to duplicate names. A common symptom of this problem are errors during the
database schema creation indicating that a database object with the same name already exists. To
resolve this problem we can assign custom, shorter identifiers usingbtteble and

db column pragmas| (Chapter 12, "ODB Pragma Language"). For example:

#pragma db object
class long_class_name

{

std::vector<int> long_container_x_;
std::vector<int> long_container_y _;

3

In the above example, the names of the two container tables wil be
long_class_name_long_container_x_ and

long_class_name_long_container_y . However, when truncated to 30 characters,
they both becomtong_class_name_long_container . To resolve this collision we can

assign a custom table name for each container:

#pragma db object
class long_class_name

{

#pragma db table("long_class_name_cont_x")
std::vector<int> long_container_x_;

#pragma db table("long_class_name_cont_y")
std::vector<int> long_container_y _;

220 C++ Object Persistence with ODB Revision 1.8, January 2012

16.5.2 Query Result Caching

16.5.2 Query Result Caching

Oracle ODB runtime implementation does not perform query result caghing (Section 4.4,|"Query
[Result}) even when explicitly requested. The OCI API supports interleaving execution of multi-
ple prepared statements on a single connection. As a result, with OCI, it is possible to have multi-
ple uncached results and calls to other database functions do not invalidate them. The only limita-
tion of the uncached Oracle results is the unavailability ofekalt::size() function. If

you call this function on an Oracle query result, therotite:result_not_cached excep-

tion (Section 3.13, "ODB Exceptions") is always thrown. Future versions of the Oracle ODB
runtime library may add support for result caching.

16.5.3 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is
deferred until the transaction is committed. Default Oracle behavior is to check such constraints
immediately. As a result, when used with ODB, a custom database schema that defines foreign
key constraints must declare such constraint$N&BIALLY DEFERRED , as shown in the
following example. Schemas generated by the ODB compiler meet this requirement automati-
cally.

CREATE TABLE Employee (

employer NUMBER(20) REFERENCES Employer(id)
DEFERRABLE INITIALLY DEFERRED);

16.5.4 Unique Constraint Violations

Due to the granularity of the Oracle error codes, it is impossible to distinguish between the dupli-
cate primary key and other unique constraint violations. As a result, when making an object
persistent, the Oracle ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception|(Section 3.13, "ODB Exceptigns").

16.5.5 LargeFLOATand NUMBERypes

The OracleFLOAT type with a binary precision greater than 53 and fixed-gelMBERYype

with a decimal precision greater than 15 cannot be automatically extracted into thiedat++
anddouble types. Instead, the Oracle ODB runtime uses a 21-byte buffer containing the binary
representation of a value as an image type for $UDAT and NUMBERypes. In order to
convert them into an application-specific large number representation, you will need to provide a
suitablevalue_traits template specialization. For more information on the binary format
used to store thELOAT andNUMBERalues, refer to the Oracle Call Interface (OCI) documen-
tation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 221

16.5.6 Timezones

Note that NUMBERype that is used to represent a floating point number (declared by specifying
NUMBERvithout any range and scale) can be extracted into thell@at+ anddouble types.

16.5.6 Timezones

ODB does not currently support the Oracle date-time types with timezone information.

16.5.7LONGTypes

ODB does not support the deprecated Ora€IBIGandLONG RAWata types.

222 C++ Object Persistence with ODB Revision 1.8, January 2012

17 Microsoft SQL Server Database

17 Microsoft SQL Server Database

To generate support code for the SQL Server database you will need to pass the
"--database mssql " (or "-d mssqgl ") option to the ODB compiler. Your application will

also need to link to the SQL Server ODB runtime libralipoflb-mssgl). All SQL
Server-specific ODB classes are defined indatlle::mssql namespace.

17.1 SQL Server Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQL
Server database types. This mapping can be customized on the per-type and per-member basis
using the ODB Pragma Language (Chapter 12, "ODB Pragma Language").

Revision 1.8, January 2012 C++ Object Persistence with ODB 223

17.1 SQL Server Type Mapping

C++ Type SQL Server Type Default l\![iL(J:I;LSeman-

bool BIT NOT NULL

char TINYINT NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT NOT NULL

int INT NOT NULL

unsigned int INT NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

l‘i)r;]sg;g”ed long BIGINT NOT NULL

float REAL NOT NULL

double FLOAT NOT NULL

std::string VARCHAR(512)/VARCHAR(256) | NOT NULL

std::wstring NVARCHAR(512)/NVARCHAR(256) | NOT NULL

GUID UNIQUEIDENTIFIER NOT NULL

Note that thestd::string andstd::wstring types are mapped differently depending on
whether a member of one of these types is an object id or not. If the member is an object id, then
for this memberstd::string is mapped toVARCHAR(256) and std::wstring — to
NVARCHAR(256). Otherwise, std::string is mapped to VARCHAR(512) and
std::wstring — to NVARCHAR(512). Note also that you can always change this mapping

using thedb type pragma|(Section 12.4.3ybe ").

The SQL Server ODB runtime library also provides support for mappingtthsstring

type to the SQL Serve€CHARand TEXT types as well astd::wstring to NCHARand
NTEXT There is also support for mapping 8td::vector<char> ,

std::vector<unsigned char> , char[N] , andunsigned char[N] types to the SQL

224 C++ Object Persistence with ODB Revision 1.8, January 2012

17.1 SQL Server Type Mapping

ServerBINARY, VARBINARY andIMAGE types. However, these mappings are not enabled by
default (in particular, by defaulstd::vector will be treated as a container). To enable the
alternative mappings for these types we need to specify the database type explicitly using the
db type pragmal(Section 12.4.3ybe "), for example:

#pragma db object
class object

{

#pragma db type ("CHAR(5)")
std::string str_;

#pragma db type("VARBINARY (max)")
std::vector<char> buf_;

#pragma db type("BINARY(16)")
unsigned char[16] uuid_;

3
Alternatively, this can be done on the per-type basis, for example:

typedef std::vector<char> buffer;
#pragma db value(buffer) type("VARBINARY (max)")

#pragma db object
class object

{

buffer buf_; // Mapped to VARBINARY (max).
3

Additionally, by default, C++ enumerations are automatically mappdNTowith the default
NULL semantics beinOT NULL

For SQL Server, ODB handles character, national character, and binary data in two different
ways depending on its maximum length. If the maximum length (in bytes) is less than or equal to
the limit specified with the-mssql-short-limit ODB compiler option (1024 by default),

then it is treated ashort data, otherwise —ong data. For short data ODB pre-allocates an inter-
mediate buffer of the maximum size and binds it directly to a parameter or result column. This
way the underlying database APl (ODBC) can read/write directly from/to this buffer. In the case
of long data, the data is read/written in chunks usingSQ¢&GetData() /SQLPutData()

ODBC functions. While the long data approach reduces the amount of memory used by the appli-
cation, it may require greater CPU resources.

Revision 1.8, January 2012 C++ Object Persistence with ODB 225

17.1 SQL Server Type Mapping

Long data has a number of limitations. In particular, when setting a custom short data limit, make
sure that it is sufficiently large so that no object id in the application is treated as long data. It is
also impossible to load an object or view with long data more than once as part of a query result
iteration [Section 4.4, "Query Resllt"). Any such attempt will result in the
odb::mssql::long_data_reload exception [(Section 17.4, "SOL Server Exceptipns").

For example:

#pragma db object
class object

{

int num_;

#pragma db type("VARCHAR(max)") // Long data.
std::string str_;

%

typedef odb::query<object> query;
typedef odb::result<object> result;

transaction t (db.begin ());

result r (db.query<object> (query::num < 100));

for (result::iterator i (r.begin ()); i !'=r.end (); ++i)
{ if (li->str_.empty ()) // First load.
{ object o;
i.load (0); // Error: second load, long_data_reload is thrown.
}}
t.commit ();

Finally, if a native view[(Section 9.5, "Native Views") contains one or more long data members,
then such members should come last both in the select-list of the native SQL query and the list of
data members in the C++ class.

Note also that because SQL Server does not support unsigned integensighed short ,
unsigned int , andunsigned long /unsigned long long C++ types are by default
mapped to th&&MALLINT, INT, andBIGINT SQL Server types, respectively. The sign bit of

the value stored by the database for these types will contain the most significant bit of the actual
unsigned value being persisted. Similarly, because there is no signed versioT N YheT

SQL Server type, by defautthar andsigned char C++ types are mapped TONYINT . As

a result, the most significant bit of the value stored by the database for these types will contain the
sign bit of the actual signed value being persisted.

226 C++ Object Persistence with ODB Revision 1.8, January 2012

17.2 SQL Server Database Class

17.2 SQL Server Database Class

The SQL Servedatabase class encapsulates the ODBC environment handle as well as the
server instance address and user credentials that are used to establish connections to the database.
It has the following interface:

namespace odb

{

namespace mssq|

{

enum protocol

{

protocol_auto,

protocol_tcp, // TCP/IP.

protocol_lpc, // Shared memory (local procedure call).
protocol_np // Named pipes.

g

class database: public odb::database

{

public:

database (const std::string& user,

const std::string& password,
const std::string& db,
const std::string& server,
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std::auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& db,
protocol_type protocol = protocol_auto,
const std::string& host =",
const std::string& instance =",
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,

std:;:auto_ptr<connection_factory> = 0);

database (const std::string& user,
const std::string& password,
const std::string& db,
const std::string& host,
unsigned int port,
const std::string& driver =",
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std:;:auto_ptr<connection_factory> = 0);

Revision 1.8, January 2012 C++ Object Persistence with ODB 227

17.2 SQL Server Database Class

database (const std::string& connect_string,
SQLHENYV environment = 0,
std:;:auto_ptr<connection_factory> = 0);

database (int& argc,
char* argv(],
bool erase = false,
const std::string& extra_connect_string =",
SQLHENYV environment = 0,
std:;:auto_ptr<connection_factory> = 0);

static void
print_usage (std::ostream&);

public:
const std::string&
user () const;

const std::string&
password () const;

const std::string&
db () const;

protocol_type
protocol () const;

const std::string&
host () const;

const std::string&
instance () const;

unsigned int
port () const;

const std::string&
server () const;

const std::string&
driver () const;

const std::string&
extra_connect_string () const;

const std::string&
connect_string () const;

SQLHENV
environment ();

228 C++ Object Persistence with ODB Revision 1.8, January 2012

17.2 SQL Server Database Class

public:

connection_ptr

connection ();

%
}

}

You will need to include theodb/mssgl/database.hxx> header file to make this class
available in your application.

The overloadedatabase constructors allow us to specify the SQL Server database parameters
that should be used when connecting to the databaseusHne and password arguments
specify the login name and passwordigér is empty, then Windows authentication is used and
thepassword argument is ignored. Thab argument specifies the database name to open. If it
is empty, then the default database for the user is used.

The server argument in the first constructor specifies the SQL Server instance address in the
standard SQL Server address format:

[protocol :Jhost[\instance] , port]

Wherepr ot ocol can beicp (TCP/IP),Ipc (shared memory), arp (named pipe). If protocol

is not specified, then a suitable protocol is automatically selected based on the SQL Server Native
Client configuration. Thédost component can be a host name or an IP addressstfance is

not specified, then the default SQL Server instance is assumed. If port is not specified, then the
default SQL Server port is used (1433). Note that you would normally specify either the instance
name or the port, but not both. If both are specified, then the instance name is ignored by the SQL
Server Native Client ODBC driver. For more information on the format of the SQL Server
address, refer to the SQL Server Native Client ODBC driver documentation.

The second and third constructors allow us to specify all these address components (protocol,
host, instance, and port) as separate arguments. The third constructor always connects using
TCP/IP to the specified host and port.

Thedriver argument specifies the SQL Server Native Client ODBC driver that should be used
to connect to the database. If not specified, then the latest available version is used. The following
examples show common ways of connecting to the database using the first three constructors:

/I Connect to the default SQL Server instance on the local machine
/I using the default protocol. Login as 'test’ with password 'secret’
/[and open the 'example_db’ database.
1
odb::mssql::database dbl ("test",

"secret"”,

"example_db");

Revision 1.8, January 2012 C++ Object Persistence with ODB 229

17.2 SQL Server Database Class

/I As above except use Windows authentication and open the default
/I database for this user.

I

odb::mssql::database db2 (",

"),

/I Connect to the default SQL Server instance on 'onega’ using the
/I default protocol. Login as 'test’ with password 'secret’ and open
I/l the 'example_db’ database.

1

odb::mssql::database db3 ("test",
"secret"”,
"example_db"
"onega");

/I As above but connect to the 'production’ SQL Server instance.
1
odb::mssql::database db4 ("test",

"secret”,

"example_db"

"onega\\production");

/l Same as above but specify protocol, host, and instance as separate
/[arguments.

1

odb::mssql::database db5 ("test",
"secret”,
"example_db",
odb::mssql::protocol_auto,
"onega",

"production™);

/I As above, but use TCP/IP as the protocol.

1

odb::mssql::database db6 ("test",
"secret”,
"example_db"

"tcp:onega\\production");

/l Same as above but using separate arguments.

1

odb::mssql::database db7 ("test",
"secret”,
"example_db",
odb::mssql::protocol_tcp,
"onega",

"production™);

/I As above, but use TCP/IP port instead of the instance name.

230 C++ Object Persistence with ODB

Revision 1.8, January 2012

17.2 SQL Server Database Class

1

odb::mssql::database db8 ("test",
"secret”,
"example_db"
"tcp:onega,1435");

/l Same as above but using separate arguments. Note that here we
/I don't need to specify protocol explicitly since it can only
/I be TCP/IP.
1
odb::mssql::database db9 ("test",
"secret”,
"example_db",
"onega",
1435);

/I As above but use the specific SQL Server Native Client ODBC
/I driver version.
1
odb::mssql::database dbA ("test",
"secret”,
"example_db"
"tcp:onega,1435",
"SQL Server Native Client 10.0");

The fourth constructor allows us to pass a custom ODBC connection string that provides all the
information necessary to connect to the database. Note also that all the other constructors have
the extra_connect_string argument which can be used to specify additional ODBC
connection attributes. For more information on the format of the ODBC connection string, refer
to the SQL Server Native Client ODBC driver documentation.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

--user | -U <login>
--password | -P <password>
--database | -d <name>
--server | -S <address>
--driver <name>
--options-file <file>

The --options-file option allows us to specify some or all of the database options in a file
with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the
argv array and theargc count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the SQL Server options out of
theargv array.

Revision 1.8, January 2012 C++ Object Persistence with ODB 231

17.3 SQL Server Connection and Connection Factory

This constructor throws thedb::mssql::cli_exception exception if the SQL Server
option values are missing or invalid. See segtion Section 17.4, "SQL Server Exceptions" for more
information on this exception.

The staticprint_usage() function prints the list of options with short descriptions that are
recognized by this constructor.

Additionally, all the constructors have teavironment argument which allows us to provide

a custom ODBC environment handle. If this argument isNWiLL, then the passed handle is
used in all the ODBC function calls made by ttisdabase class instance. Note also that the
database instance does not assume ownership of the passed environment handle and this
handle should be valid for the lifetime of thi@tabase instance.

The last argument to all of the constructors is a pointer to a connection factory. If we pass a
nonNULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the
database instance.

The connection() function returns a pointer to the SQL Server database connection encapsu-

lated by the odb::mssql::connection class. For more information on
mssql::connection , refer to[Section 17.3, "SQL Server Connection and Conneg¢tion
[Factoryt.

17.3 SQL Server Connection and Connection Factory

Themssql::connection class has the following interface:

namespace odb

{

namespace mssq|

{

class connection: public odb::connection

{
public:
connection (database&);
connection (database&, SQLHDBC handle);

SQLHDBC
handle ();

details::buffer&
long_data_buffer ();

232 C++ Object Persistence with ODB Revision 1.8, January 2012

17.3 SQL Server Connection and Connection Factory

typedef details::shared_ptr<connection> connection_ptr;

}

}
For more information on thedb::connection interface, refer tp Section 3.5, "Connectipns".
The first overloadednssqgl::connection constructor creates a new ODBC connection. The

created connection is configured to use the manual commit mode with multiple active result sets
(MARS) enabled. The second constructor allows us to creaenaection instance by
providing an already established ODBC connection. Note thatcémmection instance
assumes ownership of this handle. Thendle() accessor returns the underlying ODBC
connection handle associated with to@nection instance.

Additionally, eachconnection instance maintains a long data buffer. This buffer is used by
the SQL Server ODB runtime as an intermediate storage for piecewise handling of long data. By
default, the long data buffer has zero initial capacity and is expanded to 4096 bytes when the first
long data operation is performed. If your application requires a bigger or smaller long data buffer,
you can specify a custom capacity usingltmg_data_buffer() accessor.

Themssql::connection_factory abstract class has the following interface:

namespace odb

{

namespace mssq|

{

class connection_factory

{
public:
virtual void
database (database&) = 0;

virtual connection_ptr

connect () = 0;

%
}

}

The database() function is called when a connection factory is associated with a database
instance. This happens in thdb::mssql::database class constructors. Tlewnnect()
function is called whenever a database connection is requested.

The two implementations of tfennection_factory interface provided by the SQL Server
ODB runtime arenew_connection_factory and connection_pool_factory . You

will need to include thecodb/mssgl/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli-
cation.

Revision 1.8, January 2012 C++ Object Persistence with ODB 233

17.3 SQL Server Connection and Connection Factory

The new_connection_factory class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closednewh&onnec-
tion_factory class has the following interface:
namespace odb
{
namespace mssql
{
class new_connection_factory: public connection_factory
{
public:
new_connection_factory ();
h
3
The connection_pool_factory class implements a connection pool. It has the following
interface:

namespace odb

{

namespace mssq|

{

class connection_pool_factory: public connection_factory

{
public:
connection_pool_factory (std::size_t max_connections = 0,
std::size_t min_connections = 0);

protected:
class pooled_connection: public connection

{

public:

pooled_connection (database_type&);
pooled_connection (database_type&, SQLHDBC handle);

}7
typedef details::shared_ptr<pooled_connection> pooled_connection_ptr;

virtual pooled_connection_ptr
create ();

h
k

The max_connections argument in theonnection_pool_factory constructor speci-

fies the maximum number of concurrent connections that this pool factory will maintain. Simi-
larly, the min_connections argument specifies the minimum number of available connec-
tions that should be kept open.

234 C++ Object Persistence with ODB Revision 1.8, January 2012

17.3 SQL Server Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checksakeconnections value to

see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the caller is
blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting
for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the
pool factory checks whether the total number of connections maintained by the pool is greater
than themin_connections value. If that's the case, the connection is closed. Otherwise, the
connection is added to the pool of available connections to be returned on the next request. In
other words, if the number of connections maintained by the pool exceedsonnections

and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If thm_connections value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

Thecreate() virtual function is called whenever the pool needs to create a new connection.
By deriving from theconnection_pool_factory class and overriding this function we can
implement custom connection establishment and configuration.

If you passNULL as the connection factory to one of tth&tabase constructors, then the
connection_pool_factory instance will be created by default with the min and max
connections values set b The following code fragment shows how we can pass our own
connection factory instance:

#include <odb/database.hxx>

#include <odb/mssql/database.hxx>
#include <odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
auto_ptr<odb::mssql::connection_factory> f (
new odb::mssql::connection_pool_factory (20));

auto_ptr<odb::database> db (

new mssql::database (argc, argv, false, ", 0, f));

}

Revision 1.8, January 2012 C++ Object Persistence with ODB 235

17.4 SQL Server Exceptions

17.4 SQL Server Exceptions

The SQL Server ODB runtime library defines the following SQL Server-specific exceptions:

namespace odb

{

namespace mssq|

{

class database_exception: odb::database_exception

{
public:
class record

{

public:
SQLINTEGER
error () const;

const std::string&
sqlstate () const;

const std::string&
message () const;

h
typedef std::vector<record> records;

typedef records::size_type size_type;
typedef records::const_iterator iterator;

iterator
begin () const;

iterator
end () const;

size type
size () const;

virtual const char*
what () const throw ();

k

class cli_exception: odb::exception

{

public:

virtual const char*
what () const throw ();

g

class long_data reload: odb::exception

236 C++ Object Persistence with ODB Revision 1.8, January 2012

17.5 SQL Server Limitations

{

public:

virtual const char*

what () const throw ();

%
}

}

You will need to include the&odb/mssqgl/exceptions.hxx> header file to make these
exceptions available in your application.

The odb::mssql::database_exception is thrown if an SQL Server database operation
fails. The SQL Server-specific error information is stored as a series of records, each containing
the error code as a signed 4-byte integer, the SQLSTATE code, and the message string. All this
information is also combined and returned in a human-readable form wh#b@ function.

The odb::mssql::cli_exception is thrown by the command line parsing constructor of
the odb::mssql::database class if the SQL Server option values are missing or invalid.
Thewhat() function returns a human-readable description of an error.

Theodb::mssql::long_data_reload is thrown if an attempt is made to re-load an object
or view with long data as part of a query result iteration. For more information, réfer to [Section
[17.1, "SOL Server Type Mappirg".

17.5 SQL Server Limitations

The following sections describe SQL Server-specific limitations imposed by the current SQL
Server and ODB runtime versions.

17.5.1 Query Result Caching

SQL Server ODB runtime implementation does not perform query result cafhing (Seclion 4.4,
['Query Result") even when explicitly requested. The ODBC API and the SQL Server Native
Client ODBC driver support interleaving execution of multiple prepared statements on a single
connection. As a result, it is possible to have multiple uncached results and calls to other database
functions do not invalidate them. The only limitation of the uncached SQL Server results is the
unavailability of theresult::size() function. If you call this function on an SQL Server
query result, then thedb::result_not_cached exception [(Section 3.13, "ODB Excgp-
tions]) is always thrown. Future versions of the SQL Server ODB runtime library may add
support for result caching.

Revision 1.8, January 2012 C++ Object Persistence with ODB 237

17.5.2 Foreign Key Constraints

17.5.2 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is
deferred until the transaction is committed. The only behavior supported by SQL Server is to
check such constraints immediately. As a result, schemas generated by the ODB compiler for
SQL Server have foreign key definitions commented out. They are retained only for documenta-
tion.

17.5.3 Unique Constraint Violations

Due to the granularity of the ODBC error codes, it is impossible to distinguish between the dupli-
cate primary key and other unique constraint violations. As a result, when making an object
persistent, the SQL Server ODB runtime will translate all unique constraint violation errors to the
object_already_persistent exception|(Section 3.13, "ODB Exceptigns").

17.5.4 Multithreaded Windows Applications

Multithreaded Windows applications must use theginthread() /_beginthreadex()

and _endthread() /_endthreadex() CRT functions instead of th€reateThread()
andEndThread() Win32 functions to start and terminate threads. This is a limitation of the
ODBC implementation on Windows.

17.5.5 Affected Row Count and DDL Statements

SQL Server always returns zero as the number of affected rows for DDL statements. In particular,
this means that thdatabase::execute() (Section 3.11, "Executing Native SOL State-
[ments]) function will always return zero for such statements.

17.5.6 Long Data and Automatically Assigned Object Ids

SQL Server 2005 has a bug that causes it to fail OIN&ERT statement with th©UTPUT

clause (used to return automatically assigned object ids) if one of the inserted columns is long
data. The symptom of this bug in ODB is an exception thrown by the
database::persist() function when used on an object that contains long data and has an
automatically assigned object id. The error message reads "This operation conflicts with another
pending operation on this transaction. The operation failed.”

ODB includes a workaround for this bug which uses a less efficient method to obtain automati-
cally assigned object ids for objects that contain long data. To enable this workaround you need
to specify that the generated code will be used with SQL Server 2005 or later by passing the
--mssql-server-version 9.0 ODB compiler option.

238 C++ Object Persistence with ODB Revision 1.8, January 2012

PART Il PROFILES

PART Il PROFILES

Part Il covers the integration of ODB with popular C++ frameworks and libraries. It consists of
the following chapters.

18 |Profiles Introduction
19 |[Boost Profil¢
20

Revision 1.8, January 2012 C++ Object Persistence with ODB 239

18 Profiles Introduction

18 Profiles Introduction

ODB profiles are a generic mechanism for integrating ODB with widely-used C++ frameworks
and libraries. A profile provides glue code which allows you to seamlessly persist various compo-
nents, such as smart pointers, containers, and value types found in these frameworks or libraries.
The code necessary to implement a profile is packaged into the so called profile library. For
example, the Boost profile implementation is provided byibiwelb-boost profile library.

Besides linking the profile library to our application, it is also necessary to let the ODB compiler
know which profiles we are using. This is accomplished with-tpeofile (or -p alias)
option. For example:

odb --profile boost ...

Some profiles, especially those covering frameworks or libraries that consist of multiple
sub-libraries, provide sub-profiles that allow you to pick and choose which components you
would like to use in your application. For example, theost profile contains the
boost/data-time sub-profile. If we are only interested in tHate_time types, then we

can pas$oost/data-time instead oboost to the--profile option, for example:

odb --profile boost/date-time ...

To summarize, you will need to perform the following steps in order to make use of a profile in
your application:

1. ODB compiler: if necessary, specify the path to the profile library heatlep(ion).

2. ODB compiler: specify the profile you would like to use with-tpeofile option.

3. C++ compiler: if necessary, specify the path to the profile library headers (norhally
option).

4. Linker: link the profile library to the application.

The remaining chapters in this part of the manual describe the standard profiles provided by
ODB.

240 C++ Object Persistence with ODB Revision 1.8, January 2012

19 Boost Profile

19 Boost Profile

The ODB profile implementation for Boost is provided by ti®db-boost library and
consists of multiple sub-profiles corresponding to the individual Boost libraries. To enable all the
available Boost sub-profiles, passost as the profile name to theprofile ODB compiler
option. Alternatively, you can enable only specific sub-profiles by passing individual sub-profile
names to-profile . The following sections in this chapter discuss each Boost sub-profile in
detail. Theboost example in thedb-examples package shows how to enable and use the
Boost profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store
a specific value in a particular database system. All such exceptions derive from the
odb::boost::exception class which in turn derives from the root of the ODB exception
hierarchy, class odb::exception (Section 3.13, "ODB _ Exceptionjs”). The
odb::boost::exception class is defined in theodb/boost/exception.hxx>

header file and has the same interfacedis:exception . The concrete exceptions that can

be thrown by the Boost sub-profiles are described in the following sections.

19.1 Smart Pointers Library

Thesmart-ptr sub-profile provides persistence support for a subset of smart pointers from the

Boost smart_ptr library. To enable only this profile, pas®ost/smart-ptr to the
--profile ODB compiler option.
The currently supported smart pointers laoest::shared_ptr andboost::weak_ptr

For more information on using smart pointers as pointers to objects and views, Section
[3.2, "Object and View Pointers" and Chapter 6, "Relationghips". For more information on using
smart pointers as pointers to values, refér to Section 7.3, "PointeM AridvValue Semanticg".

When used as a pointer to a value, didgst::shared_ptr is supported. For example:

#pragma db object
class person

{

#pragma db null
boost::shared_ptr<std::string> middle_name_;

h

To provide finer grained control over object relationship loading sthart-ptr sub-profile

also provides the lazy counterparts for the above pointers:

odb::boost::lazy_ shared_ptr and odb::boost::lazy weak_ptr . You will

need to include theodb/boost/lazy-ptr.hxx> header file to make the lazy variants
available in your application. For the description of the lazy pointer interface and semantics refer

Revision 1.8, January 2012 C++ Object Persistence with ODB 241

19.2 Unordered Containers Library

to[Section 6.3, "Lazy Pointers". The following example shows how we can use these smart point-
ers to establish a relationship between persistent objects.

class employee;

#pragma db object
class position

{

#pragma db inverse(position_)
odb::boost::lazy weak ptr<employee> employee_;

%

#pragma db object
class employee

{

#pragma db not_null
boost::shared_ptr<position> position_;

%

Besides providing persistence support for the above smart pointessnaineptr sub-profile

also changes the default pointef (Section 3.2, "Object and View Pdinters") to
boost::shared_ptr . In particular, this means that database functions that return dynami-
cally allocated objects and views will return thenbasst::shared_ptr pointers. To over-

ride this behavior, add thedefault-pointer option specifying the alternative pointer type
after the--profile option.

19.2 Unordered Containers Library

The unordered sub-profile provides persistence support for the containers from the Boost
unordered library. To enable only this profile, palssost/unordered to the--profile
ODB compiler option.

The supported containers argoost::unordered_set , boost::unordered_map ,
boost::unordered_multiset , andboost::unordered_multimap . For more infor-
mation on using the set and multiset containers with ODB refer to Section 5.2, "Set and Multiset
[Containerd". For more information on using the map and multimap containers with ODB refer to
[Section 5.3, "Map and Multimap Containgrs". The following example shows how the
unordered_set container may be used within a persistent object.

242 C++ Object Persistence with ODB Revision 1.8, January 2012

19.3 Optional Library

#pragma db object
class person

{

boost::unordered_set<std::string> emails_;

%

19.3 Optional Library

Theoptional sub-profile provides persistence support forlibest::optional container
from the Boosbptional library. To enable only this profile, pabsost/optional to the
--profile ODB compiler option.

In a relational databadeoost::optional is mapped to a column that can hav&lldLL
value. Similar toodb::nullable (Section 7.3, "Pointers adULL Value Semanticg"), it can
be used to add tHeULL semantics to existing C++ types. For example:

#include <boost/optional.hpp>

#pragma db object
class person

{
std::string first_; /[l TEXT NOT NULL
boost::optional<std::string> middle_; // TEXT NULL
std::string last_; /I TEXT NOT NULL
h
Note also that similar todb::nullable , when this profile is used, tidULL values are auto-
matically enabled for data members of bo®st::optional type.

19.4 Date Time Library

The date-time sub-profile provides persistence support for a subset of types from the Boost
date_time library. It is further subdivided into two sub-profilegregorian and
posix_time . The gregorian sub-profile provides support for types from the
boost::gregorian namespace, while thgosix-time sub-profile provides support for
types from theboost::posix_time namespace. To enable the entdate-time
sub-profile, pasdoost/date-time to the --profile ODB compiler option. To enable
only thegregorian sub-profile, pasboost/date-time/gregorian , and to enable only
theposix-time sub-profile, pasboost/date-time/posix-time

Revision 1.8, January 2012 C++ Object Persistence with ODB 243

19.4 Date Time Library

The only type that thgregorian sub-profile currently supports ggegorian::date . The

types currently supported by thmsix-time sub-profile areposix_time::ptime and
posix_time::time_duration . The manner in which these types are persisted is database
system dependent and is discussed in the sub-sections that follow. The example below shows how
gregorian::date may be used within a persistent object.

#pragma db object
class person

{

boost::gregorian::date date_of birth_;

%

The concrete exceptions that can be thrown byd#te-time sub-profile implementation are
presented below.

namespace odb

{

namespace boost

{

namespace date_time

{

struct special_value: odb::boost::exception

{

virtual const char*
what () const throw ();

g

struct value_out_of range: odb::boost::exception

{

virtual const char*
what () const throw ();
3
}
}
}

You will need to include theodb/boost/date-time/exceptions.hxx> header file to
make these exceptions available in your application.

The special_value exception is thrown if an attempt is made to store a Boost date-time
special value that cannot be represented in the target databaselUdeout of range

exception is thrown if an attempt is made to store a date-time value that is out of the target
database range. The specific conditions under which these exceptions are thrown are database
system dependent and are discussed in more detail in the following sub-sections.

244 C++ Object Persistence with ODB Revision 1.8, January 2012

19.4.1 MySQL Database Type Mapping

19.4.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the MySQL database types.

Boostdate time Type MySQL Type | Default NULL Semantics
gregorian::date DATE NULL
posix_time::ptime DATETIME | NULL
posix_time::time_duration TIME NULL
The Boost special valudate_time::not_a_date_time is stored as &ULL value in a
MySQL database.
The posix-time sub-profile implementation also provides support for mapping
posix_time::ptime to the TIMESTAMPMySQL type. However, this mapping has to be

explicitly requested using thdb type pragma [(Section 12.4.3tybpe "), as shown in the
following example:

#pragma db object
class person

{

#pragma db type("TIMESTAMP") not_null
boost::posix_time::ptime updated_;

3

Some valid Boost date-time values cannot be stored in a MySQL database. An attempt to persist
any Boost date-time special value other tate _time::not_a_date_time will result in

the special_value exception. An attempt to persist a Boost date-time value that is out of the
MySQL type range will result in theut_of range exception. Refer to the MySQL documen-
tation for more information on the MySQL data type ranges.

19.4.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQLite database types.

Revision 1.8, January 2012 C++ Object Persistence with ODB 245

19.4.3 PostgreSQL Database Type Mapping

Boostdate_time Type SQLite Type | Default NULL Semantics
gregorian::date TEXT NULL
posix_time::ptime TEXT NULL
posix_time::time_duration TEXT NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

SQLite database.

The date-time sub-profile implementation also provides support for mapmnego-

rian::date and posix_time::ptime to the INTEGER SQLite type, with the integer
value representing the UNIX time. Similarly, an alternative mapping for
posix_time::time_duration to theINTEGERtype represents the duration as a number

of seconds. These mappings have to be explicitly requested usidig tyyze pragma[(Sectign
[12.4.3, type "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("INTEGER")
boost::gregorian::date born_;

h

Some valid Boost date-time values cannot be stored in an SQLite database. An attempt to persist
any Boost date-time special value other tlate _time::not_a_ date_time will result in
thespecial_value exception. An attempt to persist a negative

posix_time::time_duration value as SQLitdEXT will result in theout_of range

exception.

19.4.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date time types and the PostgreSQL database types.

Boostdate_time Type PostgreSQL Type Default NULL Semantics
gregorian::date DATE NULL
posix_time::ptime TIMESTAMP NULL
posix_time::time_duration TIME NULL

246 C++ Object Persistence with ODB Revision 1.8, January 2012

19.4.4 Oracle Database Type Mapping

The Boost special valugate_time::not_a_date_time is stored as &ULL value in a
PostgreSQL databaseposix_time::ptime values representing the special values
date_time::pos_infin and date_time::neg_infin are stored as the special Post-
greSQL TIMESTAMP valuesfinity and-infinity , respectively.

Some valid Boost date-time values cannot be stored in a PostgreSQL database. The PostgreSQL
TIME type represents a clock time, and can therefore only store positive durations with a total
length of time less than 24 hours. An attempt to perspgisi_time::time_duration

value outside of this range will result in thalue_out_of range exception. An attempt to
persist aposix_time::time_duration value representing any special value other than
date_time::not_a_date time will result in thespecial_value exception.

19.4.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the Oracle database types.

Boostdate_time Type Oracle Type Default Nt:éI;L Seman-
gregorian::date DATE NULL
posix_time::ptime TIMESTAMP NULL

o . INTERVAL DAY TO
posix_time::time_duration SECOND NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

Oracle database.
Some valid Boost date-time values cannot be stored in an Oracle database. An attempt to persist a
gregorian::date , posix_time::ptime , Or posix_time::time_duration value

representing any special value other tdate_time::not_a_date_time will result in the
special_value exception.

19.4.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost
date_time types and the SQL Server database types.

Revision 1.8, January 2012 C++ Object Persistence with ODB 247

19.4.5 SQL Server Database Type Mapping

Boostdate_time Type SQL Server Type| Default NULL Semanticg
gregorian::date DATE NULL
posix_time::ptime DATETIMEZ2 NULL
posix_time::time_duration TIME NULL
The Boost special valugate time::not_a_date time is stored as &lULL value in an

SQL Server database.

Note that theDATE TIME, andDATETIMEZ2types are only available in SQL Server 2008 and
later. SQL Server 2005 only supports DATETIME and SMALLDATETIMEdate-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the
SQL Server 2005 Native Client ODBC driver.

Thedate-time sub-profile implementation provides support for mapping
posix_time::ptime to the DATETIME and SMALLDATETIME types, however, this
mapping has to be explicitly requested usingdbdéype pragmal((Section 12.4.3ype "), as
shown in the following example:

#pragma db object
class person

{

#pragma db type("DATETIME")
boost::posix_time::ptime updated_;

}1

Some valid Boost date-time values cannot be stored in an SQL Server database. An attempt to
persist agregorian::date , posix_time::ptime , Or posix_time::time_dura-

tion value representing any special value other tteta_time::not_a_date_time will

result in thespecial_value exception. The range of tAME type in SQL server is from
00:00:00.0000000 t023:59:59.9999999 . An attempt to persist a
posix_time::time_duration value out of this range will result in the
value_out_of range exception.

248 C++ Object Persistence with ODB Revision 1.8, January 2012

20 Qt Profile

20 Qt Profile

The ODB profile implementation for Qt is provided by thmdb-qt library and consists of
multiple sub-profiles corresponding to the common type groups within Qt. Currently, only types
from theQtCore module are supported. To enable all the available Qt sub-profilesgtpass

the profile name to theprofile ODB compiler option. Alternatively, you can enable only
specific sub-profiles by passing individual sub-profile names-poofile . The following
sections in this chapter discuss each Qt sub-profile in detailyiTlexample in th@db-exam-

ples package shows how to enable and use the Qt profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store
a specific value in a particular database system. All such exceptions derive from the
odb::gt::exception class which in turn derives from the root of the ODB exception hierar-
chy, classodb::exception (Section 3.13, "ODB _Exceptions"). Thaelb::qt::excep-

tion class is defined in theodb/qt/exception.hxx> header file and has the same inter-
face asodb::exception . The concrete exceptions that can be thrown by the Qt sub-profiles
are described in the following sections.

20.1 Basic Types

The basic sub-profile provides persistence support for basic types defined by Qt. To enable
only this profile, pasgt/basic to the--profile ODB compiler option.

The currently supported basic types &8tring and QByteArray . The manner in which
these types are persisted is database system dependent and is discussed in the sub-sections that
follow. The example below shows ha@&tring may be used within a persistent object.

#pragma db object
class Person

{

QString name_;

13
20.1.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the MySQL database types.

Qt Type MySQL Type Default NULL Semantics
QString TEXT/VARCHAR(255) | NULL
QByteArray |BLOB NULL

Revision 1.8, January 2012 C++ Object Persistence with ODB 249

20.1.2 SQLite Database Type Mapping

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

Note also that th@String type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this meQ®teng is
mapped to th¥ ARCHAR(255) MySQL type. Otherwise, it is mappedT&XT.

Thebasic sub-profile also provides support for mapp@§tring to theCHARNCHARand
NVARCHARIYSQL types. However, these alternative mappings have to be explicitly requested
using thedb type pragma|(Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("CHAR(2)") not_null
QString licenseState_;

3
20.1.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQLite database types.

Qt Type SQLite Type | Default NULL Semantics
QString TEXT NULL
QByteArray |BLOB NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

20.1.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the PostgreSQL database types.

Qt Type PostgreSQL Type Default NULL Semanticg

QString TEXT NULL
QByteArray |BYTEA NULL

250 C++ Object Persistence with ODB Revision 1.8, January 2012

20.1.4 Oracle Database Type Mapping

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

Thebasic sub-profile also provides support for mapp®8tring to theCHARandVARCHAR
PostgreSQL types. However, these alternative mappings have to be explicitly requested using the
db type pragmal(Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("CHAR(2)") not_null
QString licenseState_;
3

20.1.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the Oracle database types.

Qt Type Oracle Type Default NULL Semantics
QString VARCHAR2(512) | NULL
QByteArray |BLOB NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

The basic sub-profile also provides support for mappi@&tring to the CHAR NCHAR
NVARCHARCLOB andNCLOBOracle types, and for mappia@ByteArray to theRAWOracle
type. However, these alternative mappings have to be explicitly requested ustigtype
pragma|(Section 12.4.3, "type"), as shown in the following example:

#pragma db object
class Person

{
#pragma db type("CLOB") not_null
QString firstName_;
#pragma db type("RAW(16)") null

QByteArray uuid_;
h

Revision 1.8, January 2012 C++ Object Persistence with ODB 251

20.2 Smart Pointers

20.1.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt
types and the SQL Server database types.

Qt Type SQL Server Type Default NULL Semantics
QString VARCHAR(512)/VARCHAR(256) | NULL
QByteArray | VARBINARY(max) NULL

Instances of theQString and QByteArray types are stored as a NULL value if their
isNull() member function returrisue .

Note also that th@String type is mapped differently depending on whether a member of this
type is an object id or not. If the member is an object id, then for this me@®#teng is
mapped to th’ ARCHAR(256) SQL Server type. Otherwise, it is mappe/&RCHAR(512).

The basic sub-profile also provides support for mappi@&tring to the CHAR NCHAR
NVARCHARTEXT, and NTEXT SQL Server types, and for mappif@ByteArray to the
BINARY andIMAGE SQL Server types. However, these alternative mappings have to be explic-
itly requested using thdb type pragma|(Section 12.4.3, "type"), as shown in the following
example:

#pragma db object
class Person

{

#pragma db type("NVARCHAR(256)") not_null
QString firstName_;

#pragma db type("BINARY(16)") null
QByteArray uuid_;
h

20.2 Smart Pointers

Thesmart-ptr sub-profile provides persistence support the Qt smart pointers. To enable only
this profile, pasgt/smart-ptr to the--profile ODB compiler option.

The currently supported smart pointers @®haredPointer andQWeakPointer . For more
information on using smart pointers as pointers to objects and views, riefer to Section 3.2, "Object
[and View Pointerg" anld Chapter 6, "Relationships". For more information on using smart pointers
as pointers to values, refer{to Section 7.3, "PointerdNafid_Value Semantic$". When used as a

252 C++ Object Persistence with ODB Revision 1.8, January 2012

20.2 Smart Pointers

pointer to a value, onl@SharedPointer is supported. For example:

#pragma db object
class person

{

#pragma db null
QSharedPointer<QString> middle_name_;

%

To provide finer grained control over object relationship loading sthart-ptr ~ sub-profile

also provides the lazy counterparts for the above point@tsizySharedPointer and
QLazyWeakPointer . You will need to include theodb/qt/lazy-ptr.hxx> header file

to make the lazy variants available in your application. For the description of the lazy pointer
interface and semantics refer to Section 6.3, "Lazy Pointers". The following example shows how
we can use these smart pointers to establish a relationship between persistent objects.

class Employee;

#pragma db object
class Position

{

#pragma db inverse(position_)
QLazyWeakPointer<Employee> employee_;

%

#pragma db object
class Employee

{

#pragma db not_null
QSharedPointer<Position> position_;

%

Besides providing persistence support for the above smart pointessnaineptr sub-profile

also changes the default pointg¢r (Section 3.2, "Object and View Pdinter§)shared-

Pointer . In particular, this means that database functions that return dynamically allocated
objects and views will return them sSharedPointer pointers. To override this behavior,

add the --default-pointer option specifying the alternative pointer type after the
--profile option.

Revision 1.8, January 2012 C++ Object Persistence with ODB 253

20.3 Containers Library

20.3 Containers Library

Thecontainer sub-profile provides persistence support for Qt containers. To enable only this
profile, pasgjt/containers to the--profile ODB compiler option.

The currently supported ordered containers @wector , QList , and QLinkedList
Supported map containers @dlap QMultiMap , QHash, andQMultiHash . The supported
set container iQSet. For more information on using containers with ODB refdr to Chapfer 5,
['Containers'. The following example shows how t@&et container may be used within a
persistent object.

#pragma db object
class Person

{

QSet<QString> emails_;
3

20.4 Date Time Types

Thedate-time sub-profile provides persistence support for the Qt date-time types. To enable
only this profile, pasgt/date-time to the--profile ODB compiler option.

The currently supported date-time types @ieate, QTime, andQDateTime . The manner in
which these types are persisted is database system dependent and is discussed in the sub-sections
that follow. The example below shows h@iate may be used within a persistent object.

#pragma db object
class Person

{

QDate dateOfBirth_;
b

The single concrete exception that can be thrown bgdteetime sub-profile implementation
is presented below.

namespace odb

{

namespace qt

{

namespace date_time

{

struct value_out_of range: odb::qt::exception

{

virtual const char*
what () const throw ();

254 C++ Object Persistence with ODB Revision 1.8, January 2012

20.4.1 MySQL Database Type Mapping

%
}
}
}

You will need to include thecodb/qgt/date-time/exceptions.hxx> header file to
make this exception available in your application.

The value_out_of range exception is thrown if an attempt is made to store a date-time
value that is out of the target database range. The specific conditions under which it is thrown is
database system dependent and is discussed in more detail in the following sub-sections.

20.4.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the MySQL database types.

Qt Date Time Type| MySQL Type | Default NULL Semantics
QDate DATE NULL
QTime TIME NULL
QDateTime DATETIME | NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

Thedate-time sub-profile implementation also provides support for mapQiDateTime to
the TIMESTAMPMySQL type. However, this mapping has to be explicitly requested using the
db type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("TIMESTAMP") not_null
QDateTime updated_;

3

Some valid Qt date-time values cannot be stored in a MySQL database. An attempt to persist a Qt
date-time value that is out of the MySQL type range will result irotiteof range excep-
tion. Refer to the MySQL documentation for more information on the MySQL data type ranges.

Revision 1.8, January 2012 C++ Object Persistence with ODB 255

20.4.2 SQLite Database Type Mapping

20.4.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQLite database types.

Qt Date Time Type| SQLite Type | Default NULL Semantics
QDate TEXT NULL
QTime TEXT NULL
QDateTime TEXT NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

The date-time sub-profile implementation also provides support for map@iate and
QDateTime to the SQLiteNTEGERtype, with the integer value representing the UNIX time.
Similarly, an alternative mapping fQTime to theINTEGERtype represents a clock time as the
number of seconds since midnight. These mappings have to be explicitly requested using the
db type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class Person

{

#pragma db type("INTEGER")
QDate born_;

3

Some valid Qt date-time values cannot be stored in an SQLite database. An attempt to persist any
Qt date-time value representing a negative UNIX time (any point in time prior to the
1970-01-01 00:00:00 UNIX time epoch) as an SQLIETEGER will result in the

out_of range exception.

20.4.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the PostgreSQL database types.

256 C++ Object Persistence with ODB Revision 1.8, January 2012

20.4.4 Oracle Database Type Mapping

Qt Date Time Type| PostgreSQL Type| Default NULL Semantics
QDate DATE NULL
QTime TIME NULL
QDateTime TIMESTAMP NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

20.4.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the Oracle database types.

Qt Date Time Type Oracle Type Default NULL Semantics
QDate DATE NULL
QTime INTERVAL DAY(0) TO SECOND(3) |NULL
QDateTime TIMESTAMP(3) NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

20.4.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt
date-time types and the SQL Server database types.

Qt Date Time Type| SQL Server Type| Default NULL Semantics
QDate DATE NULL
QTime TIME(3) NULL
QDateTime DATETIME2(3) | NULL

Instances of th&@Date, QTime, andQDateTime types are stored as a NULL value if their
isNull() member function returns true.

Revision 1.8, January 2012

C++ Object Persistence with ODB

257

20.4.5 SQL Server Database Type Mapping

Note that theDATE TIME, andDATETIMEZ2 types are only available in SQL Server 2008 and
later. SQL Server 2005 only supports ATETIME and SMALLDATETIMEdate-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the
SQL Server 2005 Native Client ODBC driver.

Thedate-time sub-profile implementation provides support for mapgigateTime to the
DATETIMEandSMALLDATETIMBypes, however, this mapping has to be explicitly requested
using thedb type pragma|(Section 12.4.3ybe "), as shown in the following example:

#pragma db object
class person

{

#pragma db type("DATETIME")
QDateTime updated_;

g

258 C++ Object Persistence with ODB Revision 1.8, January 2012

	Preface
	About This Document
	More Information

	PART I€€ OBJECT-RELATIONAL MAPPING
	1 Introduction
	1.1 Architecture and Workflow
	1.2 Benefits

	2 Hello World Example
	2.1 Declaring a Persistent Class
	2.2 Generating Database Support Code
	2.3 Compiling and Running
	2.4 Making Objects Persistent
	2.5 Querying the Database for Objects
	2.6 Updating Persistent Objects
	2.7 Defining and Using Views
	2.8 Deleting Persistent Objects
	2.9 Summary

	3 Working with Persistent Objects
	3.1 Concepts and Terminology
	3.2 Object and View Pointers
	3.3 Database
	3.4 Transactions
	3.5 Connections
	3.6 Error Handling and Recovery
	3.7 Making Objects Persistent
	3.8 Loading Persistent Objects
	3.9 Updating Persistent Objects
	3.10 Deleting Persistent Objects
	3.11 Executing Native SQL Statements
	3.12 Tracing SQL Statement Execution
	3.13 ODB Exceptions

	4 Querying the Database
	4.1 ODB Query Language
	4.2 Parameter Binding
	4.3 Executing a Query
	4.4 Query Result

	5 Containers
	5.1 Ordered Containers
	5.2 Set and Multiset Containers
	5.3 Map and Multimap Containers
	5.4 Using Custom Containers

	6 Relationships
	6.1 Unidirectional Relationships
	6.1.1 To-One Relationships
	6.1.2 To-Many Relationships

	6.2 Bidirectional Relationships
	6.2.1 One-to-One Relationships
	6.2.2 One-to-Many Relationships
	6.2.3 Many-to-Many Relationships

	6.3 Lazy Pointers
	6.4 Using Custom Smart Pointers

	7 Value Types
	7.1 Simple Value Types
	7.2 Composite Value Types
	7.2.1 Composite Value Column and Table Names

	7.3 Pointers and NULL Value Semantics

	8 Inheritance
	8.1 Reuse Inheritance
	8.2 Polymorphism Inheritance

	9 Views
	9.1 Object Views
	9.2 Table Views
	9.3 Mixed Views
	9.4 View Query Conditions
	9.5 Native Views
	9.6 Other View Features and Limitations

	10 Session
	10.1 Object Cache

	11 Optimistic Concurrency
	12 ODB Pragma Language
	12.1 Object Type Pragmas
	12.1.1 table
	12.1.2 pointer
	12.1.3 abstract
	12.1.4 readonly
	12.1.5 optimistic
	12.1.6 id
	12.1.7 callback
	12.1.8 schema

	12.2 View Type Pragmas
	12.2.1 object
	12.2.2 table
	12.2.3 query
	12.2.4 pointer
	12.2.5 callback

	12.3 Value Type Pragmas
	12.3.1 type
	12.3.2 id_type
	12.3.3 null/not_null
	12.3.4 default
	12.3.5 options
	12.3.6 readonly
	12.3.7 unordered
	12.3.8 index_type
	12.3.9 key_type
	12.3.10 value_type
	12.3.11 value_null/value_not_null
	12.3.12 id_options
	12.3.13 index_options
	12.3.14 key_options
	12.3.15 value_options
	12.3.16 id_column
	12.3.17 index_column
	12.3.18 key_column
	12.3.19 value_column

	12.4 Data Member Pragmas
	12.4.1 id
	12.4.2 auto
	12.4.3 type
	12.4.4 null/not_null
	12.4.5 default
	12.4.6 options
	12.4.7 column (object, composite value)
	12.4.8 column (view)
	12.4.9 transient
	12.4.10 readonly
	12.4.11 inverse
	12.4.12 version
	12.4.13 unordered
	12.4.14 table
	12.4.15 index_type
	12.4.16 key_type
	12.4.17 value_type
	12.4.18 value_null/value_not_null
	12.4.19 id_options
	12.4.20 index_options
	12.4.21 key_options
	12.4.22 value_options
	12.4.23 id_column
	12.4.24 index_column
	12.4.25 key_column
	12.4.26 value_column

	12.5 Namespace Pragmas
	12.5.1 schema

	12.6 C++ Compiler Warnings
	12.6.1 GNU C++
	12.6.2 Visual C++
	12.6.3 Sun C++
	12.6.4 IBM XL C++
	12.6.5 HP aC++

	PART II€€ DATABASE SYSTEMS
	13 MySQL Database
	13.1 MySQL Type Mapping
	13.2 MySQL Database Class
	13.3 MySQL Connection and Connection Factory
	13.4 MySQL Exceptions
	13.5 MySQL Limitations
	13.5.1 Foreign Key Constraints

	14 SQLite Database
	14.1 SQLite Type Mapping
	14.2 SQLite Database Class
	14.3 SQLite Connection and Connection Factory
	14.4 SQLite Exceptions
	14.5 SQLite Limitations
	14.5.1 Query Result Caching
	14.5.2 Automatic Assignment of Object Ids
	14.5.3 Foreign Key Constraints
	14.5.4 Constraint Violations
	14.5.5 Sharing of Queries

	15 PostgreSQL Database
	15.1 PostgreSQL Type Mapping
	15.2 PostgreSQL Database Class
	15.3 PostgreSQL Connection and Connection Factory
	15.4 PostgreSQL Exceptions
	15.5 PostgreSQL Limitations
	15.5.1 Query Result Caching
	15.5.2 Foreign Key Constraints
	15.5.3 Unique Constraint Violations
	15.5.4 Date-Time Format
	15.5.5 Timezones
	15.5.6 NUMERIC Type Support

	16 Oracle Database
	16.1 Oracle Type Mapping
	16.2 Oracle Database Class
	16.3 Oracle Connection and Connection Factory
	16.4 Oracle Exceptions
	16.5 Oracle Limitations
	16.5.1 Identifier Truncation
	16.5.2 Query Result Caching
	16.5.3 Foreign Key Constraints
	16.5.4 Unique Constraint Violations
	16.5.5 Large FLOAT and NUMBER Types
	16.5.6 Timezones
	16.5.7 LONG Types

	17 Microsoft SQL Server Database
	17.1 SQL Server Type Mapping
	17.2 SQL Server Database Class
	17.3 SQL Server Connection and Connection Factory
	17.4 SQL Server Exceptions
	17.5 SQL Server Limitations
	17.5.1 Query Result Caching
	17.5.2 Foreign Key Constraints
	17.5.3 Unique Constraint Violations
	17.5.4 Multithreaded Windows Applications
	17.5.5 Affected Row Count and DDL Statements
	17.5.6 Long Data and Automatically Assigned Object Ids

	PART III€€ PROFILES
	18 Profiles Introduction
	19 Boost Profile
	19.1 Smart Pointers Library
	19.2 Unordered Containers Library
	19.3 Optional Library
	19.4 Date Time Library
	19.4.1 MySQL Database Type Mapping
	19.4.2 SQLite Database Type Mapping
	19.4.3 PostgreSQL Database Type Mapping
	19.4.4 Oracle Database Type Mapping
	19.4.5 SQL Server Database Type Mapping

	20 Qt Profile
	20.1 Basic Types
	20.1.1 MySQL Database Type Mapping
	20.1.2 SQLite Database Type Mapping
	20.1.3 PostgreSQL Database Type Mapping
	20.1.4 Oracle Database Type Mapping
	20.1.5 SQL Server Database Type Mapping

	20.2 Smart Pointers
	20.3 Containers Library
	20.4 Date Time Types
	20.4.1 MySQL Database Type Mapping
	20.4.2 SQLite Database Type Mapping
	20.4.3 PostgreSQL Database Type Mapping
	20.4.4 Oracle Database Type Mapping
	20.4.5 SQL Server Database Type Mapping

