Embedded C++/Hybrid Mapping
Getting Started Guide

Copyright © 2005-2009 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
[GNU Free Documentation License, versior] 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTVIL, PDF,|and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml

Table of Contents

Prefacg .
[About This Documeht

[More Informat|0|h.

(1.1 Mapplng OverweW

1.2 Benefit .
[2 HeIIo World Example . .
[2.1 Writing XML Document and Schetna .
[2.2 Translating Schema to Q++
[2.3 Implementing Application Lodic
[2.4 Compiling and Running
[2.5 Adding Serializatign .
[2.6 A Minimal Version
[3 Mapping Configuratidn .
[3.1 Standard Template lerary
[3.2 Input/Output Stream Librgry .
[3.3 C++ Exceptionjs . .
[3.4 XML Schema Validatign .
[3.5 64-bit Integer Type .
[3.6 Parser and Serializer Rguse .
[4 Working with Object Mode]s.
[4.1 Namespacps.
(4.2 Memory Managemdnt
[4.3 Attributes and Elements .
[4.4 Compositors . .
[4.5 Accessing the Obiject Moﬂel .
[4.6 Modifying the Object ModEl .
[4.7 Creating the Object Model from Screhtch
[4.8 Customizing the Object Moglel
[5 Mapping for Built-In XML Schema Typkes
(5.1 Mapping fotQName
(5.2 Mapping forNMTOKENSndIDREFSl

[5.3 Mapping fobase64Binary andhexBinary | .

[5.4 Time Zone Representation
(5.5 Mapping fordate | .

[5.6 Mapping fodateTime |
[5.7 Mapping foduration |
(5.8 Mapping folgDay|

[5.9 Mapping fogMonth| . .
[5.10 Mapping fogMonthDay |.

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide

Table of Contents

WONURARDNWRRPRRRR

Table of Contents

[5.11 Mapping fogYear |
[5.12 Mapping fogYearMonth |
[5.13 Mapping fotime | .
[6 Parsing and Serialization
[6.1 Customizing Parsers and Serializers .

ii Embedded C++/Hybrid Mapping Getting Started Guide

73
74
15
76
79

February 2009

Preface

Preface

About This Document

The goal of this document is to provide you with an understanding of the C++/Hybrid program-
ming model and allow you to efficiently evaluate XSD/e against your project’s technical require-
ments. As such, this document is intended for embedded C++ developers and software architects
who are looking for an embedded XML processing solution. Prior experience with XML and
C++ is required to understand this document. Basic understanding of XML Schema is advanta-
geous but not expected or required.

More Information

Beyond this guide, you may also find the following sources of information useful:

o (XSD/e Compiler Command Line Man(pal
® [Embedded C++/Parser Mapping Getting Started Guide. The C++/Hybrid mapping uses
C++/Parser for XML parsing.
[Embedded C++/Serializer Mapping Getting Started Guide. The C++/Hybrid mapping uses
C++/Serializer for XML serialization.
® The INSTALL file in the XSD/e distribution provides build instructions for various plat-
forms.
® The examples/cxx/hybrid/ directory in the XSD/e distribution contains a collection
of examples and a README file with an overview of each example.
e The[xsde-usefs mailing list is the place to ask technical questions about XSD/e and the

Embedded C++/Hybrid mapping. Furthermore, [the archives may already have answers to
some of your questions.

1 Introduction

Welcome to CodeSynthesis XSD/e and the Embedded C++/Hybrid mapping. XSD/e is a validat-
ing XML parser/serializer and data binding generator for mobile and embedded systems. Embed-
ded C++/Hybrid is a W3C XML Schema to C++ mapping that represents the data stored in XML
as a light-weight, statically-typed, in-memory object model.

1.1 Mapping Overview

Based on a formal description of an XML vocabulary (schema), the C++/Hybrid mapping

produces a tree-like data structure suitable for in-memory processing. The core of the mapping
consists of C++ classes that constitute the object model and are derived from types defined in
XML Schema. The C++/Hybrid mapping uses the APIs provided by the Embedded C+}/Parser

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 1

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsde-users
http://www.codesynthesis.com/pipermail/xsde-users/
http://www.codesynthesis.com/products/xsde/c++/parser/

1.1 Mapping Overview

and Embedded C++/Serializer mappings to perform validation and parsing of XML to the object
model and validation and serialization of the object model to XML. The following diagram illus-
trates the high-level architecture of the C++/Hybrid mapping:

Application

C++/Hybrid

C++/Parser C++/Serializer

The use of well-defined APIs presented by the C++/Parser and C++/Serializer mappings for
XML parsing and serialization allows a number of advanced techniques, for example, customiza-
tion of parsing and serialization code, filtering of XML during parsing or object model during
serialization, as well as the hybrid, partially even-driven, partially in-memory processing where
the XML document is delivered to the application as parts of the object model. The last feature
combines the ease and convenience of the in-memory processing model with the ability to mini-
mize the use of RAM and process documents that would otherwise not fit into memory.

The Embedded C++/Hybrid mapping was specifically designed and optimized for mobile and
embedded systems where hardware constraints require high efficiency and economical use of
resources. As a result, the generated parsing and serialization code is 2-10 times faster than
general-purpose XML processors while at the same time maintaining extremely low static and
dynamic memory footprints. For example, an executable that performs validating XML parsing
and serialization can be as small as 150KB in size. The size can be further reduced by disabling
support for parsing or serialization as well as XML Schema validation.

The generated code and the runtime library are also highly-portable and, in their minimal config-
uration, can be used without STL, RTTI, iostream, C++ exceptions, and with the minimal use of
C++ templates.

A typical application that uses the C++/Hybrid mapping for XML processing performs the
following three steps: it first reads (parses) an XML document to an in-memory object model, it
then performs some useful computations on that object model which may involve modification of
the model, and finally it may write (serialize) the modified object model back to XML. The next

2 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

http://www.codesynthesis.com/products/xsde/c++/serializer/

1.2 Benefits

chapter presents a simple application that performs these three steps. The following chapters
describe the Embedded C++/Hybrid mapping in more detail.

1.2 Benefits

Traditional XML access APIs such as Document Object Model (DOM) or Simple API for XML
(SAX) as well as general-purpose XML Schema validators have a number of drawbacks that
make them less suitable for creating mobile and embedded XML processing applications. These
drawbacks include:

® Generic representation of XML in terms of elements, attributes, and text forces an applica-
tion developer to write a substantial amount of bridging code that identifies and transforms
pieces of information encoded in XML to a representation more suitable for consumption by
the application logic.

® String-based flow control defers error detection to runtime. It also reduces code readability
and maintainability.

® Lack of type safety and inefficient use of resources due to the data being represented as text.

e Extra validation code that is not used by the application.

® Resulting applications are hard to debug, change, and maintain.

In contrast, a light-weight, statically-typed, vocabulary-specific object model produced by the
Embedded C++/Hybrid mapping allows you to operate in your domain terms instead of the
generic elements, attributes, and text. Native data types are used to store the XML data (for
example, integers are stored as integers, not as text). Validation code is included only for XML
Schema constructs that are used in the application. This results in efficient use of resources and
compact object code.

Furthermore, static typing helps catch errors at compile-time rather than at run-time. Automatic
code generation frees you for more interesting tasks (such as doing something useful with the
information stored in the XML documents) and minimizes the effort needed to adapt your appli-

cations to changes in the document structure. To summarize, the C++/Hybrid object model has
the following key advantages over generic XML access APIs:

® Ease of useThe generated code hides all the complexity associated with parsing and serial-
izing XML. This includes navigating the structure and converting between the text represen-
tation and data types suitable for manipulation by the application logic.

o Natural representation. The object representation allows you to access the XML data using
your domain vocabulary instead of generic elements, attributes, and text.

® Concise codeWith the object representation the application implementation is simpler and
thus easier to read and understand.

e Safety. The generated object model is statically typed and uses functions instead of strings
to access the information. This helps catch programming errors at compile-time rather than
at runtime.

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 3

2 Hello World Example

® Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in the document structure. With static typing, the C++ compiler can
pin-point the places in the client code that need to be changed.

e Efficiency. If the application makes repetitive use of the data extracted from XML, then the
C++/Hybrid object model is more efficient because the navigation is performed using func-
tion calls rather than string comparisons and the XML data is extracted only once. The
runtime memory usage is also reduced due to more efficient data storage (for instance,
storing numeric data as integers instead of strings) as well as the static knowledge of cardi-
nality constraints.

Furthermore, the generated XML parsing and serialization code combines validation and
data-to-text conversion in a single step. This makes the generated code much more efficient
than traditional architectures with separate stages for validation and data conversion.

2 Hello World Example

In this chapter we will examine how to parse, access, modify, and serialize a very simple XML
document using the generated C++/Hybrid object model as well as the XML parser and serializer.
The code presented in this chapter is based ohdll@ example which can be found in the
examples/cxx/hybrid/ directory of the XSD/e distribution.

2.1 Writing XML Document and Schema

First, we need to get an idea about the structure of the XML documents we are going to process.
Ourhello.xml , for example, could look like this:

<?xml version="1.0"?>
<hello>

<greeting>Hello</greeting>
<name>sun</name>
<name>earth</name>

<name>world</name>

</hello>

Then we can write a description of the above XML in the XML Schema language and save it into
hello.xsd

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:.complexType name="hello">
<xs:sequence>

4 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

2.2 Translating Schema to C++

<xs:element name="greeting" type="xs:string"/>
<xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="hello" type="hello"/>

</xs:schema>

Even if you are not familiar with XML Schema, it should be easy to connect declarations in
hello.xsd to elements irhello.xml . The hello type is defined as a sequence of the
nestedgreeting andname elements. Note that the term sequence in XML Schema means that
elements should appear in a particular order as opposed to appearing multiple timmesn&he
element has itsnaxOccurs property set tainbounded which means it can appear multiple
times in an XML document. Finally, the globally-definkdllo element prescribes the root
element for our vocabulary. For an easily-approachable introduction to XML Schema refer to
(XML Schema Part 0: Primer.

The above schema is a specification of our XML vocabulary; it tells everybody what valid docu-
ments of our XML-based language should look like. The next step is to compile the schema to
generate the object model and the parser.

2.2 Translating Schema to C++

Now we are ready to translate olkello.xsd to C++. To do this we invoke the XSD/e
compiler from a terminal (UNIX) or a command prompt (Windows):

$ xsde cxx-hybrid --generate-parser --generate-aggregate hello.xsd

This invocation of the XSD/e compiler produces three pairs of C++ fileko.hxx and

hello.cxx , hello-pskel.hxx andhello-pskel.cxx , as well as

hello-pimpl.hxx and hello-pimpl.cxx . The first pair contains the object model
classes. The second pair contains parser skeletons. Parser skeletons are generated by the
C++/Parser mapping which is automatically invoked by C++/Hybrid. For now we can ignore
parser skeletons except that we need to compile them and link the result to our application. The
last pair of files contains parser implementations. They implement the parser skeletons to create
and populate the object model types from XML data. The generation of parser skeletons and
parser implementations is requested with-tgenerate-parser XSD/e compiler option.

You may be wondering what is th@enerate-aggregate option for. This option instructs

the XSD/e compiler to generate parser and, as we will see later, serializer aggregates. The gener-
ated parser implementation files mentioned above contain a separate parser implementation class
for each type defined in XML Schema. These parser implementations need to be instantiated and
connected before we can use them to parse an XML document. When you specify the
--generate-aggregate option, the XSD/e compiler generates a class (in the parser imple-

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 5

http://www.w3.org/TR/xmlschema-0/

2.2 Translating Schema to C++

mentation files), called parser aggregate, for each global element defined in the schema (you can
also generate a parser aggregate for a type as well as control for which global elements parser

aggregates are generated, se¢ the XSD/e Compiler Command Line|Manual for more information).

A parser aggregate instantiates and connects all the necessary parser implementations needed to
parse an XML document with a given root element. We will see how to use the parser aggregate

for thehello root element in the next section.

The following code fragment is taken framello.hxx
for our "Hello World" XML vocabulary looks like:

class hello

{
public:
hello ();

/I greeting

1

const std::string&
greeting () const;

std::string&
greeting ();

void
greeting (const std::string&);

/l name

I

typedef xsde::string_sequence hame_sequence;

typedef name_sequence::iterator name_iterator;

typedef name_sequence::.const_iterator name_const_iterator;

const name_sequence&
name () const;

name_sequence&
name ();

private:

};...

. it shows what the C++ object model

Thehello C++ class corresponds to thello XML Schema type. For each element in this
type a set of accessor and modifier functions are generated instulthe class. Note that the
member functions for thgreeting andname elements are different because of the different
cardinalities these two elements hageegting is a required single element andme is a

sequence of elements).

6 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

2.3 Implementing Application Logic

It is also evident that the built-in XML Schema tygieng is mapped tstd::string . The
internalstring_sequence class that is used in tiiame_sequence type definition has an
interface similar tostd::vector . The mapping between the built-in XML Schema types and
C++ types is described in more detall in Chapter 5, "Mapping for Built-in XML Schema Types".

2.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in
our XML document:

#include <iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{

try

{

/I Parse.

1

hello_paggr hello_p;

xml_schema::document_pimpl doc_p (hello_p.root_parser (),
hello_p.root_name ());

hello_p.pre ();

doc_p.parse (argv[1]);

hello* h = hello_p.post ();

/I Print what we’ve got.

1

for (hello::name_const_iterator i = h->name ().begin ();
i I="h->name ().end ();

++i)
{
cout << h->greeting () << ", " << *i << "I" << endl;

}

delete h;
}
catch (const xml_schema::parser_exception& e)
{

cerr << argv[l] << ™" << e.line () << ™" << e.column ()
<< " " << e.text () << endl;
return 1;
}
}

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 7

2.4 Compiling and Running

The first part of our application creates a document parser and parses the XML file specified in
the command line to the object model. ielo_paggr class is the parser aggregate class we
discussed earlier. Parsing is covered in more detail in Chapter 6, "Parsing and Serialization". The
second part uses the returned object model to iterate over names and print a greeting line for each
of them. We also catch and print tkeal_schema::parser_exception exception in case
something goes wrong.

2.4 Compiling and Running

After saving our application from the previous sectiodrimer.cxx , we are ready to compile
our first program and run it on the test XML document. On UNIX this can be done with the
following commands:

$ c++ -l.../libxsde -c driver.cxx hello-pskel.cxx hello-pimpl.cxx

$ c++ -o driver driver.o hello-pskel.o hello-pimpl.o \
.../libxsde/xsde/libxsde.a

$./driver hello.xml

Hello, sun!

Hello, moon!

Hello, world!

Here.../libxsde represents the path to thiexsde directory in the XSD/e distribution.

We can also test the error handling. To test XML well-formedness checking, we can try to parse
hello.hxx

$./driver hello.hxx
hello.hxx:1:0: not well-formed (invalid token)

We can also try to parse a valid XML but not from our vocabulary, for exameptexsd

$./driver hello.xsd
hello.xsd:2:57: unexpected element encountered

2.5 Adding Serialization

While parsing and accessing the XML data may be everything you need, there are applications
that require creating new or modifying existing XML documents. To request the generation of
serialization support we will need to add thgenerate-serializer option to our XSD/e
compiler invocation:

$ xsde cxx-hybrid --generate-parser --generate-serializer \
--generate-aggregate hello.xsd

8 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

2.5 Adding Serialization

This will result in two additional pairs of C++ fileshello-sskel.hxx and
hello-sskel.cxx , as well ashello-simpl.hxx and hello-simpl.cxx . Similar to

the parser files, the first pair contains serializer skeletons (generated by the C++/Serializer
mapping) and the second pair contains serializer implementations as well as the serializer aggre-
gate for thenello root element.

Let us first examine an application that modifies an existing object model and serializes it back to
XML:

#include <iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{

try

{

/I Parse.

1

hello_paggr hello_p;

xml_schema::document_pimpl doc_p (hello_p.root_parser (),
hello_p.root_name ());

hello_p.pre ();

doc_p.parse (argv[1]);

hello* h = hello_p.post ();

/I Change the greeting phrase.
1
h->greeting ("Hi");

/I Add another entry to the name sequence.
1
h->name ().push_back ("mars");

/I Serialize the modified object model to XML.

1

hello_saggr hello_s;

xml_schema::document_simpl doc_s (hello_s.root_serializer (),
hello_s.root_name ());

hello_s.pre (*h);

doc_s.serialize (cout);

hello_s.post ();

delete h;

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 9

2.5 Adding Serialization

catch (const xml_schema::parser_exception& e)

{

cerr << argv[l] << ™" << e.line () << ™" << e.column ()
<< " "<<etext () << endl
return 1,

}

catch (const xml_schema::serializer_exception& €)

{

cerr << "error: " << e.text () << end|;
return 1;

}
}

First, our application parses an XML document and obtains its object model as in the previous
example. Then it changes the greeting string and adds another entry to the list of names. Finally,
it creates a document serializer and serializes the object model back to XML. The resulting XML
is written to the standard outpuab(t) for us to inspect. We could have also written the result to

a file or memory buffer by creating an instance daftd:.ofstream or
std::ostringstream and passing it toserialize() instead of cout . The
hello_saggr class is the serializer aggregate class we discussed earlier. Serialization is
covered in more detail |n Chapter 6, "Parsing and Serialization".

If we now compile and run this application (don't forget to compile and link
hello-sskel.cxx andhello-simpl.cxx), we will see the output as shown in the follow-
ing listing:

<hello>
<greeting>Hi</greeting>
<name>sun</name>
<name>earth</name>
<name>world</name>
<name>mars</name>
</hello>

We can also test XML Schema validation. We can "accidently” remove all the names from the
object model by adding the following aft@ush_back ("mars")

h->name ().clear ();

This will violate our vocabulary specification which requires at leastnamee element to be
present. If we make the above change and recompile our application, we will get the following
output:

$./driver hello.xml
error: expected element not encountered

10 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

2.5 Adding Serialization

It is also possible to create and serialize an object model from scratch as shown in the following
example. For this case we can remove-tgenerate-parser option since we don’t need
support for XML parsing.

#include <sstream>
#include <iostream>

#include "hello.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{

try

{
hello h;

h.greeting ("Hi");

hello::name_sequence& ns = h.name ();
ns.push_back ("Jane");
ns.push_back ("John");

/I Serialize the object model to XML.

1

hello_saggr hello_s;

xml_schema::document_simpl doc_s (hello_s.root_serializer (),
hello_s.root_name ());

ostringstream ostr;

hello_s.pre (*h);
doc_s.serialize (ostr);
hello_s.post ();

delete h;

cout << ostr.c_str () << endl;

}

catch (const xml_schema::serializer_exception& €)

{

cerr << "error: " << e.text () << end|;
return 1;

}
}

In this example we used the generated default constructor to create an empty instance of type
hello . We then set greeting and, to reduce typing, we obtained a reference to the name
sequence which we used to add a few names. The serialization part is identical to the previous
example except this time we first save the XML representation into a string. If we compile and

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 11

2.6 A Minimal Version

run this program, it produces the following output:

<hello>
<greeting>Hi</greeting>
<name>Jane</name>
<name>John</name>
</hello>

2.6 A Minimal Version

The previous sections showed a number of examples that relied on STL for strings, iostream of
input/output and C++ exceptions for error handling. As was mentioned in the introduction and
will be discussed in further detail in the next chapter, the C++/Hybrid mapping can be configured
only to rely on the minimal subset of C++. In this section we will implement an example that
parses, prints, modifies and serializes the object model without relying on STL, iostream, or C++
exceptions.

The first step is to instruct the XSD/e compiler not to use any of the above features in the gener-
ated code. You may also need to re-configure and rebuild the XSD/e runtime library
(libxsde.a) to disable STL, iostream, and exceptions.

$ xsde cxx-hybrid --no-stl --no-iostream --no-exceptions \
--generate-parser --generate-serializer --generate-aggregate \
hello.xsd

If you now study the generatéello.hxx file, you will notice that the use etd::string
type is replaced witlchar* . When STL is disabled, built-in XML Schema typging is
mapped to a C string. The following listing presents the contedrivar.cxx in full:

#include <stdio.h>
#include "people.hxx"

#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

struct writer: xml_schema::writer

{

virtual bool
write (const char* s, size_t n)

{

return fwrite (s, n, 1, stdout) == 1;

}

virtual bool
flush ()

12 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

2.6 A Minimal Version

return fflush (stdout) == 0;

}
h

int

main (int argc, char* argv[])

{
/I Open the file or use STDIN.
1
FILE* f = fopen (argv[1], "rb");

if (f==0)

{
fprintf (stderr, "%s: unable to open\n", argc);
return 1;

}

/I Parse.
1
using xml_schema::parser_error;

parser_error pe;
bool io_error = false;
hello* h = 0;

do
hello_paggr hello_p;
xml_schema::document_pimpl doc_p (hello_p.root_parser (),
hello_p.root_name ());
if (pe = doc_p._error ()
break;

hello_p.pre ();

if (pe = hello_p._error ())
break;

char buf[4096];
do
{
size_t s =fread (buf, 1, sizeof (buf), f);
if (s |= sizeof (buf) && ferror (f))
io_error = true;

break;

}

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 13

2.6 A Minimal Version

doc_p.parse (buf, s, feof (f) = 0);
pe = doc_p._error ();

} while (pe && 'feof (f));

if (io_error || pe)
break;

h = hello_p.post ();
pe = hello_p._error ();

} while (false);
fclose (f);

/I Handle parsing errors.
1
if (io_error)

fprintf (stderr, "%s: read failure\n", argc);
return 1;

}

if (pe)

{
switch (pe.type ()
{

case parser_error::sys:

{
fprintf (stderr, "%s: %s\n", argc, pe.sys_text ());
break;

}

case parser_error::xml:

fprintf (stderr, "%s:%Ilu:%Ilu: %s\n",
argc, pe.line (), pe.column (), pe.xml_text ());
break;

}

case parser_error::schema:

fprintf (stderr, "%s:%Ilu:%Ilu: %s\n",
argc, pe.line (), pe.column (), pe.schema_text ());
break;

}

default:
break;

}

return 1,

}

14 Embedded C++/Hybrid Mapping Getting Started Guide

February 2009

2.6 A Minimal Version

/I Print what we've got.

1

for (hello::name_const_iterator i = h->name ().begin ();
i = h->name ().end ();
++i)

{

printf ("%s, %s\n", h->greeting (), *i);

}

using xml_schema::strdupx;

/I Change the greeting phrase.

1

h->greeting (strdupx ("Hi"));

/I Add another entry to the name sequence.

1

h->name ().push_back (strdupx ("mars"));

/I Serialize.

1

using xml_schema::serializer_error;

serializer_error se;
writer w;

do
hello_saggr hello_s;
xml_schema::document_simpl doc_s (hello_s.root_serializer (),
hello_s.root_name ());
if (se = doc_s._error ()
break;
hello_s.pre (*h);

if (se = hello_s._error ()
break;

doc_s.serialize (w);

if (se = doc_s._error ()
break;

hello_s.post ();
se = hello_s._error ();
} while (false);

delete h;

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 15

3 Mapping Configuration

/I Handle serializer errors.
1
if (se)

{
switch (se.type ()

{

case serializer_error::sys:

{
fprintf (stderr, "error: %s\n", se.sys_text ());
break;

}

case serializer_error::xml:

{
fprintf (stderr, "error: %s\n", se.xml_text ());
break;

}

case serializer_error::schema:

fprintf (stderr, "error: %s\n", se.schema_text ());
break;

default:
break;

}

return 1,

}
}

The parsing and serialization parts of the above example got quite a bit more complex due to the
lack of exceptions and iostream support. For more information on what's going on there, refer to
[Chapter 6, "Parsing and Serialization". On the other hand, the access and modification of the
object model stayed relatively unchanged. The only noticeable change is the use of the
xml_schema::strdupx function to create C strings from string literals. We have to use this
function because the object model assumes ownership of the strings passed. We also cannot use
the standard Gtrdup because the object model expects the strings to be allocated with C++
operatornew[] while C strdup usesmalloc (on most implementations operatoew is
implemented in terms ahalloc so you can probably usérdup if you really want to).

3 Mapping Configuration

The Embedded C++/Hybrid mapping has a number of configuration parameters that determine
the overall properties and behavior of the generated code, such as the use of Standard Template
Library (STL), Input/Output Stream Library (iostream), C++ exceptions, XML Schema valida-
tion, 64-bit integer types, as well as parser and serializer implementation reuse styles. In the
previous chapter we have already got an overview of the changes to the generated code that

16 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

3.1 Standard Template Library

happen when we disable STL, iostream, and C++ exceptions. In this chapter we will discuss these
and other configuration parameters in more detail.

In order to enable or disable a particular feature, the corresponding configuration parameter
should be set accordingly in the XSD/e runtime library as well as specified during schema compi-
lation with the XSD/e command line options as described in the XSD/e Compiler Command Line

Manua).

While the XML documents can use various encodings, the Embedded C++/Hybrid mapping
always delivers character data to the application in the UTF-8 encoding. The underlying XML

parser used by the mapping includes built-in support for XML documents encoded in UTF-8,

UTF-16, 1SO-8859-1, and US-ASCII. Other encodings can be supported by providing applica-
tion-specific decoder functions. C++/Hybrid also expects character data supplied by the applica-
tion to be in the UTF-8 encoding. The underlying XML serializer used by the mapping produces
the resulting XML in the UTF-8 encoding as well.

3.1 Standard Template Library

To disable the use of STL you will need to configure the XSD/e runtime without support for STL
as well as pass theno-stl option to the XSD/e compiler when translating your schemas.

When STL is disabled, all string-based XML Schema typeg (see Chapter 5, "Mapping for|Built-In
XML Schema Types") are mapped to C-stgtear* instead oftd::string . In this configu-

ration when you set an element or attribute value of a string-based type, the object model assumes
ownership of the string and expects that it was allocated with operaidi . To simplify

creation of such strings from string literals, the generated code providesdrdopx and
strndupx functions in thexml_schema namespace. These functions are similar to C
strdup andstrndup except that they use operat@w[] instead oimalloc to allocate the

string:

namespace xml_schema

{

char*
strdupx (const char*);

char*
strndupx (const char*, size_t);

}

3.2 Input/Output Stream Library

To disable the use of iostream you will need to configure the XSD/e runtime library without
support for iostream as well as pass -Hm®-iostream option to the XSD/e compiler when
translating your schemas. When iostream is disabled, a number of overfzade) and

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 17

http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml

3.3 C++ Exceptions

serialize() functions in the document parseam|_schema::document_pimpl) and
document serializex(l_schema::document_simpl) become unavailable. Sge Chaptdr 7,
['Document Parser and Error Handling" in the Embedded C++/Parser Mapping Getting Started
Guide and Chapter 8, "Document Serializer and Error Handling" in the Embedded C++/Serializer
Mapping Getting Started Guide for details.

3.3 C++ Exceptions

To disable the use of C++ exceptions, you will need to configure the XSD/e runtime without
support for exceptions as well as pass-the-exceptions option to the XSD/e compiler

when translating your schemas. When C++ exceptions are disabled, the error conditions that may
arise while parsing, serializing, and modifying the object model are indicated with error codes
instead of exceptions. For more information on error handling during parsing, see Chéapter 7,
['Document Parser and Error Handling" in the Embedded C++/Parser Mapping Getting Started
Guide. For more information on error handling during serialization}, see Chapter 8, "Do¢ument
[Serializer and Error Handling" in the Embedded C++/Serializer Mapping Getting Started Guide.
For more information on error handling in the object model, see Chapter 4, "Working with|Object

below.

3.4 XML Schema Validation

By default, XML Schema validation is enabled during both parsing and serialization. To disable
validation during parsing, you will need to configure the XSD/e runtime to disable support for
validation in the C++/Parser mapping as well as pass-shppress-parser-val option

to the XSD/e compiler when translating your schemas. To disable validation during serialization,
you will need to configure the XSD/e runtime to disable support for validation in the C++/Serial-
izer mapping as well as pass thsuppress-serializer-val option to the XSD/e
compiler when translating your schemas. If you are disabling validation during both parsing and
serialization, you can use thesuppress-validation option instead of the two options
mentioned above.

Disabling XML Schema validation allows to further increase the parsing and serialization perfor-
mance as well as reduce footprint in cases where the data being parsed and/or serialized is known
to be valid.

3.5 64-bit Integer Type

By default the 64-bitong andunsignedLong built-in XML Schema types are mapped to the
64-bitlong long andunsigned long long fundamental C++ types. To disable the use

of these types in the mapping you will need to configure the XSD/e runtime accordingly as well
as pass the-no-long-long option to the XSD/e compiler when translating your schemas.
When the use of 64-bit integral C++ types is disabledldhg andunsignedLong XML

18 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8

4 Working with Object Models

Schema built-in types are mappeddong andunsigned long fundamental C++ types.

3.6 Parser and Serializer Reuse

When one type in XML Schema inherits from another, it is often desirable to be able to reuse the
parser and serializer implementations corresponding to the base type in the parser and serializer
implementations corresponding to the derived type. XSD/e provides support for two reuse styles:
the so-callednixin (generated when thereuse-style-mixin option is specified) antlein
(generated by default) styles. The XSD/e runtime should be configured in accordance with the
reuse style used in the generated code.|See Section 5.6, "Parsel Reuse" in the Embedded
C++/Parser Mapping Getting Started Guide [and Section 6.6, "Serializer Reuse" in the Embedded
C++/Serializer Mapping Getting Started Guide for details.

4 Working with Object Models

As we have seen in the previous chapters, the XSD/e compiler generates a C++ class for each
type defined in XML Schema. Together these classes constitute an object model for an XML
vocabulary. In this chapter we will take a closer look at different parts that comprise an object
model class as well as how to create, access, and modify object models.

In this chapter we will use the following schema that describes a collection of person records. We
save it inpeople.xsd

<?xml version="1.0"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="gender">
<xs:.restriction base="xs:string">
<xs:enumeration value="male"/>
<xs:enumeration value="female"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="person">
<xs:sequence>
<xs:element name="first-name" type="xs:string"/>
<xs:element name="middle-name" type="xs:string" minOccurs="0"/>
<xs:element name="last-name" type="xs:string"/>
<xs:element name="gender" type="gender"/>
<xs:element name="age" type="xs:unsignedShort"/>
</xs:sequence>
<xs:attribute name="id" type="xs:unsignedInt" use="required"/>
</xs:complexType>

<xs:complexType name="people">
<xs:sequence>

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 19

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#5.6
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#6.6

4 Working with Object Models

<xs:element name="person" type="person" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

<xs:element name="people" type="people"/>

</xs:schema>

A sample XML instance to go along with this schema is savpdaple.xml

<?xml version="1.0"?>
<people>

<person id="1">
<first-name>John</first-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>32</age>

</person>

<person id="2">
<first-name>Jane</first-name>
<middle-name>Mary</middle-name>
<last-name>Doe</last-name>
<gender>female</gender>
<age>28</age>

</person>

</people>

Compiling people.xsd with the XSD/e compiler results in three generated object model
classesgender , person andpeople . Here is how they look with STL enabled:

/I gender (fixed-length)

1

class gender: public std::string

{

public:

gender ();

gender (const gender&);

gender& operator= (const gender&);

g

/I person (fixed-length)
I
class person
{
public:
person ();
person (const person&);
person& operator= (const person&);

20 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

/'id

I

unsigned int
id () const;

unsigned int&

id ();

void
id (unsigned int);

/I first-name

I

const std::string&
first_name () const;

std::string&
first_name ();

void
first_ name (const std::string&);

/I middle-name

I

bool

middle_name_present () const;

void
middle_name_present (bool);

const std::string&
middle_name () const;

std::string&
middle_name ();

void

middle_name (const std::string&);

/' last-name

I

const std::string&
last_name () const;

std::string&
last_name ();

void
last_name (const std::string&);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide

4 Working with Object Models

21

4 Working with Object Models

/I gender

I

const ::gender&
gender () const;

::gender&
gender ();

void
gender (const ::gender&);

/l age

I

unsigned short
age () const;

unsigned short&
age ();

void
age (unsigned short);

private:

};...

I/l people (variable-length)
I
class people
{
public:
people ();

private:
people (const people&);
people& operator= (const people&);

public:
/I person
I
typedef xsde::fix_sequence<person> person_sequence;
typedef person_sequence::iterator person_iterator;
typedef person_sequence::const_iterator person_const_iterator;

const person_sequence&
person () const;

person_sequence&
person ();

22 Embedded C++/Hybrid Mapping Getting Started Guide

February 2009

4.1 Namespaces

private:

};...

We will examine these classes in detail in the subsequent sections.

4.1 Namespaces

XSD/e maps XML namespaces specified intdrgetNamespace attribute in XML Schema

to one or more nested C++ namespaces. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with’/ as the name separator. For example, the
http://www.codesynthesis.com/cs/my XML namespace is mapped to tbhe:my

C++ namespace.

The default mapping of namespace URIs to C++ namespaces can be altered using the
--namespace-map and--namespace-regex compiler options. For example, to map the
http://www.codesynthesis.com/my XML namespace to thes::my C++ namespace,

we can use the following option:

--namespace-map http://www.codesynthesis.com/my=cs::my

A vocabulary without a namespace is mapped to the global scope. This also can be altered with
the above options by using an empty name for the XML namespace. For example, we could place
the generated object model classes fopdmple.xsd schema into theecords C++ names-

pace by adding the following option:

--namespace-map =records

4.2 Memory Management

To ensure that objects are allocated and passed efficiently, the C++/Hybrid mapping divides all
object model types into fixed-length and variable-length. A type is variable-length if any of the
following is true:

1. itis an XML Schemést type
2. itis an XML Schemanion type and STL is disabled
3. it derives from a variable-length type
4. it contains an element or attribute of a variable-length type
5. it contains an element or compositsequence or choice) with maxOccurs greater
than one
6. it is recursive (that is, one of its elements contains a reference, directly or indirectly, to the

type itself)

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 23

4.2 Memory Management

The following build-in XML Schema types are variable-lendghase64Binary , hexBinary
NMTOKENSand IDREFS. Furthermore, if STL is disabled, all string-based build-in XML
Schema types are variable-length, namslying , normalizedString , token , Name
NMTOKENNCNamelanguage , QNamelD, IDFER, andanyURI .

Otherwise, a type is fixed-length. As you might have noticed from the previous code listings, the
XSD/e compiler adds a comment before each generated object model class that states whether it
is fixed or variable-length. For example, feople type is variable-length because it contains a
sequence ofperson elements rhaxOccurs="unbounded”). If we recompile the
people.xsd schema with the-no-stl option, the first two types will also become vari-
able-length sincgender inherits from angerson contains elements of tlering built-in

type. And when STL is disablesliring is variable-length.

The object model uses different methods for storing and passing around fixed-length and vari-
able-length types. Instances of fixed-length types are stored and passed by value since it is cheaper
to copy than to allocate them dynamically (in the STL casestthestring is expected to

support the referenced-counted copy-on-write optimization, which makes copying cheap).

Variable-length types are always allocated dynamically and are stored and passed as pointers.
Because copying an instance of a variable-length type can be expensive, such types make their
copy constructor and copy assignment operators unavailable.

When you set a value of an element or attribute of a variable-length type, the object model
assumes ownership of the pointed to object. It expects you to allocate the object with operator
new and will eventually delete it with operatdelete . As an example, let us extend our
people.xsd schema with the following type:

<xs:complexType name="staff">
<xs:sequence>
<xs:element name="permanent" type="people"/>
<xs:element name="contract" type="people"/>
</xs:sequence>
</xs:complexType>

If we compile it with XSD/e, we will get the following C++ class:

/I staff (variable-length)
1
class staff
{
public:
staff ();

private:

staff (const staff&);
staff& operator= (const staff&);

24 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.3 Attributes and Elements

public:
/I permanent
I
const people&
permanent () const;

people&
permanent ();

void
permanent (people*);

/I contract

I

const people&
contract () const;

people&
contract ();

void
contract (people*);

private:

3

Notice that unlike, say, thérst_name() modifier function in theperson class, the
permanent() and contract() modifiers expect a pointer to thgeople object. The

following listing shows how we can create and populate an instance stathe class. The use
of smart pointers to hold the results of dynamic allocations is omitted for brevity:

people* per = new people;
people* con = new people;

/I Populate per and con.
staff s;

s->permanent (per) // Assumes ownership or per.
s->contract (con) // Assumes ownership or con.

4.3 Attributes and Elements

As we have seen before, XSD/e generates a different set of member functions for elements with
different cardinalities. The C++/Hybrid mapping divides all the possible element and attribute
cardinalities into three cardinality classese, optional, andsequence.

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 25

4.3 Attributes and Elements

The one cardinality class covers all elements that should occur exactly once as well as the
required attributes. In our example, tfiest-name , last-name , gender , and age
elements as well as the attribute belong to this cardinality class. The following code fragment
shows again the accessor and modifier functions that are generated fimstthame

element in theperson class:

class person

{

/I first-name

I

const std::string&
first_name () const;

std::string&
first_name ();

void
first_ name (const std::string&);

k

The first two accessor functions return read-only (constant) and read-write references to the
element’s value, respectively. The modifier function sets the new value for the element. Note that
the signature of the modifier function varies depending on whether the element or attribute is of a
fixed or variable-length type, as was discussed in the previous section.

The optional cardinality class covers all elements that can occur zero or one time as well as
optional attributes. In our example, teddle-name element belongs to this cardinality class.

The following code fragment shows again the accessor and modifier functions that are generated
for this element in thperson class:

class person

{

/I middle-name

I

bool

middle_name_present () const;

void
middle_name_present (bool);

const std::string&
middle_name () const;

std::string&
middle_name ();

void

middle_name (const std::string&);

%

26 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.3 Attributes and Elements

Compared to thene cardinality classpptional adds two extra functions for querying and modi-
fying the element’s presence status. The following example shows how we can use these func-
tions:

person&p = ...

if (p.middle_name_present ())

{

cout << p.middle_name () << endl;
p.middle_name_present (false); // Reset to the "not present" state.

}

Finally, thesegquence cardinality class covers all elements that can occur more than once. In our
example, theperson element in thgpeople type belongs to this cardinality class. The follow-

ing code fragment shows again the type definitions as well as the accessor and modifier functions
that are generated for this element infieeple class:

class people

{

/I person

I

typedef xsde::fix_sequence<person> person_sequence;
typedef person_sequence::iterator person_iterator;

typedef person_sequence::const_iterator person_const_iterator;

const person_sequence&
person () const;

person_sequence&
person ();

k

The person_sequence type is a sequence container for the element’s values. It has an inter-
face similar to std::vector and we will discuss it in more detail shortly. The
person_iterator and person_const_iterator types are read-write and read-only
(constant) iterators for th@erson_sequence container.

Unlike other two cardinality classes, thequence class only provides accessor functions that
return read-only (constant) and read-write references to the sequence container. The modification
of the element values is performed my manipulating the returned sequence container and
elements that it contains.

In the remainder of this section we will examine the interfaces of the sequence containers which
differ slightly depending on whether the element type is fixed or variable-length and whether
C++ exceptions are enabled. Also, when STL is disabled, string sequences have a special inter-
face which is also discussed below.

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 27

4.3 Attributes and Elements

When exceptions are enabled, the fixed-length type sequences are implemented in terms of the
following class template:

template <typename T>
class fix_sequence
{
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;

typedef size t size_type;
typedef ptrdiff_t difference_type;

typedef T* iterator;
typedef const T* const_iterator;

public:
fix_sequence ();

void
swap (fix_sequence&);

private:
fix_sequence (const fix_sequence&);

fix_sequence&
operator= (fix_sequenceg&);

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

T&
front ();

const T&
front () const;

T&

28 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.3 Attributes and Elements

back ();

const T&
back () const;

T&
operator[] (size_t);

const T&
operator[] (size_t) const;

public:
bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

public:
void
clear ();

void
pop_back ();

iterator
erase (iterator);

void
push_back (const T&);

iterator
insert (iterator, const T&);

void
reserve (size_t);

h

When C++ exceptions are disabled, the signatures optisé_back() , insert() , and
reserve() functions change as follows:

template <typename T>
class fix_sequence

{
public:

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 29

4.3 Attributes and Elements

enum error
error_none,
error_no_memory

I3

public:
error
push_back (const T&);

error
insert (iterator, const T&);

error
insert (iterator, const T&, iterator& result);

error
reserve (size_t);

h

That is, the functions that may require memory allocation now return an error code that you will
need to check in order to detect the out of memory condition.

When exceptions are enabled, the variable-length type sequences are implemented in terms of the
following class template:

template <typename T>
class var_sequence
{
public:
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;

typedef size t size_type;
typedef ptrdiff_t difference_type;

typedef <implementation details> iterator;
typedef <implementation details> const_iterator;

public:
var_sequence ();

void
swap (var_sequence&);

30 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

private:
var_sequence (const var_sequence&);

var_sequence&
operator= (var_sequenceg&);

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

T&
front ();

const T&
front () const;

T&
back ();

const T&
back () const;

T&
operator[] (size_t);

const T&
operator[] (size_t) const;

public:
bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

public:

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide

4.3 Attributes and Elements

31

4.3 Attributes and Elements

void
clear ();

void
pop_back ();

iterator
erase (iterator);

void
push_back (T%);

iterator
insert (iterator, T*);

error
reserve (size_t);

%

Most of this interface is identical to the fixed-length type version except fguste back()

andinsert() functions. Similar to the modifier functions for elements and attributes of vari-
able-length types, these two functions expect a pointer to the dynamically-allocated instance of
the type and assume ownership of the passed object. To simplify error handling, these two func-

tions delete the passed object if the reallocation of the underlying sequence buffer fails.

When C++ exceptions are disabled, thesh_back() , insert()

tions return an error code to signal the out of memory condition:

template <typename T>

class var_sequence
public:

enum error
error_none,
error_no_memory

5

public:
error
push_back (T%);

error
insert (iterator, T*);

error

insert (iterator, T*, iterator& result);

32

Embedded C++/Hybrid Mapping Getting Started Guide

, andreserve()

func-

February 2009

4.3 Attributes and Elements

error
reserve (size_t);

%

When STL is enabled, the string sequence have the same interface as
fix_sequence<std::string> . When STL is disabled and strings are mappechto* |,

the string sequence has a special interface. When C++ exceptions are enabled, it has the follow-
ing definition:

namespace xml_schema

{
class string_sequence
{
public:
typedef char* value_type;

typedef char** pointer;

typedef const char** const_pointer;
typedef char* reference;

typedef const char* const_reference;

typedef size t size_type;
typedef ptrdiff t difference_type;

typedef char** iterator;
typedef const char* const* const_iterator;

string_sequence ();

void
swap (string_sequenceg&);

private:
string_sequence (string_sequenceg&);

string_sequence&
operator= (string_sequenceg&);

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 33

4.3 Attributes and Elements

char*
front ();

const char*
front () const;

char*
back ();

const char*
back () const;

char*
operator[] (size_t);

const char*
operator[] (size_t) const;

public:

bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

public:

34

void
clear ();

void
pop_back ();

iterator
erase (iterator);

void
push_back (char*);

void
push_back copy (const char*);

iterator
insert (iterator, char®);

Embedded C++/Hybrid Mapping Getting Started Guide

February 2009

4.3 Attributes and Elements

void
reserve (size_t);

/I Detach a string from the sequence at a given position.
/I The string pointer at this position in the sequence is
/l set to O.
i
char*
detach (iterator);
I3
}

The push_back() andinsert() functions assume ownership of the passed string which
should be allocated with operatoew[] and will be deallocated with operatdelete]] by

the string_sequence object. Similar tovar_sequence , these two functions free the
passed string if the reallocation of the underlying sequence buffer fails. The
push_back copy() function makes a copy of the passed string. If you detach the underlying
element string, then it should eventually be deallocated with opeletie|]

When C++ exceptions are disabled, the signatures of {mesh_back()
push_back copy() ,insert() , andreserve() functions in thestring_sequence
class change as follows:

namespace xml_schema
class string_sequence
public:
enum error
error_none,
error_no_memory

g

public:
error
push_back (char*);

error
push_back copy (const char*);

error
insert (iterator, char®);

error
insert (iterator, char*, iterator& result);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 35

4.4 Compositors

error
reserve (size_t);
I3
}

4.4 Compositors

The XML Schema language provides three compositor constructs that are used to group
elementsall , sequence , andchoice . If a compositor has amptional or sequence cardinal-

ity class (seg Section 4.3, "Attributes and Elemgnts™) or if a compositor is asd® |, then

the C++/Hybrid mapping generates a nested class for such a compositor as well as a set of acces-
sor and modifier functions similar to the ones defined for elements and attributes. Otherwise, the
member functions, corresponding to elements defined in a compositor, are generated directly in
the containing class.

Compositor classes are either fixed or variable-length and obey the same storage and passing
rules as object model classes corresponding to XML Schema typgs (see Section 4.2, 'Memory
[Managemen}"). Consider the following schema fragment as an example:

<complexType name="type">
<sequence>
<sequence minOccurs="0">
<element name="a" type="int"/>
<element name="b" type="string" maxOccurs="unbounded"/>
</sequence>
<sequence maxOccurs="unbounded">
<element name="c" type="int"/>
<element name="d" type="string"/>
</sequence>
</sequence>
</complexType>

The corresponding object model class is shown below:

I type (variable-length)
1
class type
{
public:
type ();

private:
type (const type&);
type& operator= (const type&);

public:

/I sequence (variable-length)
1

36 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.4 Compositors

class sequence_type

{
public:
sequence_type ();

private:
sequence_type (const sequence_type&);
sequence_type& operator= (const sequence_type&);

public:
Il a
1
int
a () const;

int&
a();

void
a (int);

/b

i

typedef xsde::string_sequence b_sequence;

typedef b_sequence::iterator b_iterator;

typedef b_sequence::const_iterator b_const_iterator;

const b_sequence&
b () const;

b_sequence&

b ()
private:
};...

bool
sequence_present () const;

void
sequence_present (bool);

const sequence_type&
sequence () const;

sequence_type&
sequence ();

void
sequence (sequence_type®);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 37

4.4 Compositors

/I sequencel (fixed-length)
1
class sequencel_type

{

public:
sequencel_type ();
sequencel_type (const sequencel_type&);
sequencel_type& operator= (const sequencel_type&);

Ilc

1

int

¢ () const;
int&

c(;

void
c (int);

/I d

1

const std::string&
d () const;

std::string&
d();

void
d (const std::string&);

private:

I3

typedef xsde::fix_sequence<sequencel type> sequencel sequence;
typedef sequencel_sequence::iterator sequencel _iterator;

typedef sequencel sequence:.const_iterator sequencel_const_iterator;

const sequencel_sequence&
sequencel () const;

sequencel_sequence&
sequencel ();

private:

};...

38 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.4 Compositors

The content of the outesequence compositor is generated in-line since this compositor
belongs to thene cardinality class. The first nestedquence compositor is optionahfinOc-

curs="0"), which results in a corresponding nested class. Notice thaetluence type is
variable-length and the accessor and modifier functions corresponding tsetjugnce
compositor are the same as for an optional element or attribute. Similarly, the second nested
compositor is of thesequence cardinality class haxOccurs="unbounded"”), which also

results in a nested class and a set of accessor functions.

Generated code corresponding toadin andsequence compositor, whether in-line or as a
nested class, simply define accessor and modifier functions for the elements that this compositor
contains. For thehoice compositor, on the other hand, additional types and functions are
generated to support querying and selecting the choice arm that is in effect. Consider the follow-
ing simple example:

<complexType nhame="type">
<choice>
<element name="a" type="int"/>
<element name="b" type="string"/>
<element name="c" type="boolean"/>
</choice>

</complexType>

The corresponding object model class is shown next:

I type (fixed-length)
I
class type
{
public:
type ();
type (const type&);
type& operator= (const type&);

/I choice
I
enum choice_arm_tag

{
a_tag,
b tag,
c_tag

5

choice_arm_tag
choice_arm () const;

void
choice_arm (choice_arm_tag);

/la

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 39

4.4 Compositors

1
int
a () const;

int&
a();

void
a (int);

/b

1

const std::string&
b () const;

std::string&
b ()

void
b (const std::string&);

Ilc

I

bool

c () const;

bool&
c(;

void
¢ (bool);

private:
h

The extra type is thehoice_arm_tag enumeration which defines a set of tags corresponding

to each choice arm. There are alsodheice_arm() accessor and modifier functions that can

be used to query and set the current choice arm. The following code fragment shows how we can
use this class:

type& x = ...

switch (x.choice_arm ())

{

case type::a_tag:

{

cout << "a: " << x.a () << endl;
break;

}

40 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.4 Compositors

case type::b_tag:
{
cout << "b: " << x.b () << endl;
break;
}
case type::c_tag:
{
cout << "c: " << x.c () << endl;
break;
}
}

/I Modifiers automatically set the corresponding arm.
I
x.a (10);

/I For accessors we need to select the arm explicitly.
I

x.choice_arm (type::b_tag);

xb () ="b"

The following slightly more complex example triggers the generation of nested classes for the
choice compositor as well as for treequence compositor insidehoice . Notice that the
nested class fosequence is generated because it isdhoice even though its cardinality
class isone.

<complexType hame="type">
<choice maxOccurs="unbounded">
<sequence>
<element name="a" type="int"/>
<element name="b" type="string"/>
</sequence>
<element name="c" type="boolean"/>
</choice>
</complexType>

The corresponding object model class is shown next:

I type (variable-length)
1
class type

{
public:

type ();
private:
type (const type&);
type& operator= (const type&);

public:

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 41

4.4 Compositors

/I choice (fixed-length)

1

class choice_type

{

public:
choice_type ();
choice_type (const choice_type&);
choice_type& operator= (const choice_type&);

enum choice_arm_tag
{

sequence_tag,

c_tag

g

choice_arm_tag
choice_arm () const;

void
choice_arm (choice_arm_tag);

/I sequence (fixed-length)

1

class sequence_type

{

public:
sequence_type ();
sequence_type (const sequence_typeg&);
sequence_type& operator= (const sequence_type&);

Il a

I

int

a () const;

int&
a();

void
a (int);

/I'b

1

const std::string&
b () const;

std::string&
b ()

void
b (const std::string&);

42 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.5 Accessing the Object Model

private:

};...

const sequence_type&
sequence () const;

sequence_type&
sequence ();

void
sequence (const sequence_type&);

Ilc

i

bool

¢ () const;

bool&
c();

void
¢ (bool);

private:

I3

typedef xsde::fix_sequence<choice_type> choice sequence;
typedef choice _sequence::iterator choice_iterator;

typedef choice_sequence::const_iterator choice const _iterator;

const choice_sequence&
choice () const;

choice_sequence&
choice ();

private:

};...

4.5 Accessing the Object Model

In this section we will examine how to get to the information stored in the object model for the
person records vocabulary introduced at the beginning of this chapter. The following application
accesses and prints the contents opd@ple.xml file:

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 43

4.5 Accessing the Object Model

#include <memory>
#include <iostream>

#include "people.hxx"
#include "people-pimpl.hxx"

using namespace std;

int

main ()

{
/I Parse.
I
people_paggr people_p;
xml_schema::document_pimpl doc_p (people_p.root_parser (),

people_p.root_name ());

people_p.pre ();
doc_p.parse ("people.xml");
auto_ptr<people> ppl (people_p.post ());

/I lterate over individual person records.
I
people::person_sequence& ps = ppl->person ();

for (people::person_iterator i = ps.begin (); i I= ps.end (); ++i)
person& p = *i;

/I Print names: first-name and last-name are required elements,
/I middle-name is optional.

1

cout << "name: " << p.first_name () <<"";

if (p.middle_name_present ())
cout << p.middle_name () <<"";

cout << p.last_name () << endl;

/I Print gender, age, and id which are all required.
1
cout << "gender: " << p.gender () << endl
<<"age: "<<p.age () <<endl
<<"id: "<<p.id () <<endl
<< endl;

}
}

This code shows common patterns of accessing elements and attributes with different cardinality
classes. For the sequence elempetqon in thepeople type) we first obtain a reference to
the container and then iterate over individual records. The values of elements and attributes with

44 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.6 Modifying the Object Model

the one cardinality classfifst-name |, last-name , gender , age, andid) can be obtained
directly by calling the corresponding accessor functions. For the optohlle-name

element we first check if the value is present and only then call the corresponding accessor to
retrieve it.

Note that when we want to reduce typing by creating a variable representing a fragment of the
object model that we are currently working wigs (andp above), we obtain a reference to that
fragment instead of making a copy. This is generally a good rule to follow when creating efficient
applications.

If we run the above application on our sangeple.xml , the output looks as follows:

name: John Doe
gender: male
age: 32

id: 1

name: Jane Mary Doe
gender: female

age: 28

id: 2

4.6 Modifying the Object Model

In this section we will examine how to modify the information stored in the object model for our
person records vocabulary. The following application changes the contentspebfie.xml
file:

#include <memory>
#include <iostream>

#include "people.hxx"
#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

int

main ()

{
/I Parse.
1
people_paggr people_p;
xml_schema::document_pimpl doc_p (people_p.root_parser (),

people_p.root_name ());

people_p.pre ();
doc_p.parse ("people.xml");
auto_ptr<people> ppl (people_p.post ());

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 45

4.6 Modifying the Object Model

/I lterate over individual person records and increment
/l the age.

I

people::person_sequence& ps = ppl->person ();

for (people::person_iterator i = ps.begin (); i I= ps.end (); ++i)

i->age ()++; // Alternative way: i->age (i->age () + 1)

}

/I Add middle-name to the first record and remove it from
/I the second.

1

person& john = ps[0];

person& jane = ps[1];

john.middle_name ("Mary");
jane.middle_name_present (false);

/I Add another John record.
1
ps.push_back (john);

/I Serialize the modified object model to XML.

I

people_saggr people_s;

xml_schema::document_simpl doc_s (people_s.root_serializer (),
people_s.root_name ());

people_s.pre (*ppl);

doc_s.serialize (cout);

people_s.post ();

}

The first modification the above application performs is iterating over person records and incre-
menting the age value. This code fragment shows how to modify the value of a required attribute
or element. The next modification shows how to set a new value for the optiinicie-name

element as well as clear its value. Finally, the example adds a copy of the John Doe record to the
person element sequence.

Note that in this case using references forghe john , andjane variables is no longer a
performance improvement but a requirement for the application to function correctly. If we
hadn’t used references, all our changes would have been made on copies without affecting the
object model.

If we run the above application on our sangeple.xml , the output looks as follows:

46 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.7 Creating the Object Model from Scratch

<?xml version="1.0"?>
<people>

<person id="1">
<first-name>John</first-name>
<middle-name>Mary</middle-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>33</age>

</person>

<person id="2">
<first-name>Jane</first-name>
<last-name>Doe</last-name>
<gender>female</gender>
<age>29</age>

</person>

<person id="1">
<first-name>John</first-name>
<middle-name>Mary</middle-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>33</age>

</person>

</people>

4.7 Creating the Object Model from Scratch

In this section we will examine how to create a new object model for our person records vocabu-
lary. The following application recreates the content of the orip@aple.xml file:

#include <iostream>

#include "people.hxx"
#include "people-simpl.hxx"

using namespace std;

int
main ()
{
people ppl;
people::person_sequence& ps = ppl.person ();

/' John
1

{

person p;

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 47

4.7 Creating the Object Model from Scratch

p.first_name ("John");
p.last_name ("Doe");
p.age (32);

p.id (1);

gender g;
g.assign ("male");
p.gender (g);

ps.push_back (p);
}

/I Jane
1

{

person p;

p.first_name ("Jane");
p.middle_name ("Mary");
p.last_name ("Doe");
p.age (28);

p.id (2);

gender g;
g.assign ("male");
p.gender (g);

ps.push_back (p);
}

/I Serialize the object model to XML.
I
people_saggr people_s;
xml_schema::document_simpl doc_s (people_s.root_serializer (),
people_s.root_name ());
people_s.pre (ppl);
doc_s.serialize (cout);
people_s.post ();
}

The only new part in the above application is the calls tpéople andperson constructors.

As a general rule, a newly created instance does not assign any values to its elements and
attributes. That is, members with ttxée cardinality class are left uninitialized, members with the
optional cardinality class are set to the "not present” state, and members wadquéece cardi-

nality class have empty containers. After the instance has been created, we can set its element and
attribute values using the modifier functions.

The above application produces the following output:

48 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.8 Customizing the Object Model

<?xml version="1.0" ?>
<people>

<person id="1">
<first-name>John</first-name>
<last-name>Doe</last-name>
<gender>male</gender>
<age>32</age>

</person>

<person id="2">
<first-name>Jane</first-name>
<middle-name>Mary</middle-name>
<last-name>Doe</last-name>
<gender>female</gender>
<age>28</age>

</person>

</people>

4.8 Customizing the Object Model

Sometimes it is desirable to be able to store extra, application-specific data in some object model
classes or nested compositor classes. Cases where this functionality may be required include
handling of typeless content matched by XML Schema wildcards as well as a need for an applica-
tion to pass extra data as part of the object model. The C++/Hybrid mapping provides a
light-weight mechanism for storing custom data by allowing you to add a sequence of opaque
objects, stored amid* , to select generated classes. It is also possible to customize the parsing
and serialization code for such classes in order to populate the custom data sequence during
parsing and later serialize it to XML. See Section 6.1, "Customizing Parsers and Serializers" for
details.

To instruct the XSD/e compiler to include custom data in a specific object model class, we need
to use the-custom-data option with the corresponding XML Schema type name as its argu-
ment. To include custom data into a nested compositor class, use its qualified name starting with
the XML Schema type, for examptgpe::sequencel . If we would like to add the ability to

store custom data in the generafetson class for our person records vocabulary, we can
compilepeople.xsd like this:

$ xsde cxx-hybrid --custom-type person people.xsd
The resultingperson class will have the following extra set of type definitions and functions:
/I person (variable-length)

1
class person

{

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 49

4.8 Customizing the Object Model

public:

/I Custom data.

I

typedef xsde::data_sequence custom_data_sequence;

typedef custom_data_sequence::iterator custom_data _iterator;

typedef custom_data_sequence::const_iterator custom_data_const _iterator;

const custom_data_sequence&
custom_data () const;

custom_data_sequence&
custom_data ();

h

Notice also that thperson class is now variable-length since it contains a sequence. When C++
exceptions are enabled, the custom data sequence has the following interface:

class data_sequence

{

public:
typedef void* value_type;
typedef void** pointer;
typedef const void** const_pointer;
typedef void* reference;
typedef const void* const_reference;

typedef size t size_type;
typedef ptrdiff t difference_type;

typedef void** iterator;
typedef const void* const* const_iterator;

typedef void (*destroy_func) (void* data, size_t pos);

public:
data_sequence ();

void
destructor (destroy_func);

void
swap (data_sequenceg&);

private:
data_sequence (const data_sequence&);

data_sequence&
operator= (data_sequenceg&);

50 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

4.8 Customizing the Object Model

public:
iterator
begin ();

const_iterator
begin () const;

iterator
end ();

const_iterator
end () const;

void*
front ();

const void*
front () const;

void*
back ();

const void*
back () const;

void*
operator[] (size_t);

const void*
operator[] (size_t) const;

public:
bool
empty () const;

size t
size () const;

size t
capacity () const;

size t
max_size () const;

public:
void
clear ();

void
pop_back ();

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 51

4.8 Customizing the Object Model

iterator
erase (iterator);

void
push_back (void*);

iterator
insert (iterator, void*);

void
reserve (size_t);

%

The destructor() modifier allows you to specify the clean up function used to free the
sequence elements. The second argument in this clean up function is the position of the element
in the sequence that is being freed. This allows you to store objects of different types in the same
custom data sequence. Tpash_back() andinsert() functions free the passed object if

the reallocation of the underlying sequence buffer fails.

When exceptions are disabled, thesh_back() , insert() , andreserve() functions
return an error code to signal the out of memory condition:

class data_sequence
public:

enum error
error_none,
error_no_memory

I3

public:
error
push_back (void*);

error
insert (iterator, void*);

error
insert (iterator, void*, iterator& result);

error
reserve (size_t);

52 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5 Mapping for Built-In XML Schema Types

The following code fragment shows how we can store and retrieve custom datgansihe
class:

class data

{
=

void
destroy_data (void* p, size_t)

{

delete static_cast<data*> (p);

}

person& = ...;
person::.custom_data sequence& cd = p.custom_data ();

cd.destructor (&destroy_data);

/I Store.

1

data* d = new data,
cd.push_back (d);

/I Retrieve.
I
for (person:.custom_data_iterator i = cd.begin (); i = cd.end (); ++i)

{

data* d = static_cast<data*> (*i);

}

5 Mapping for Built-In XML Schema Types

In XML Schema, built-in types, such ag , string , etc., are defined in the XML Schema
namespace. By default this namespace is mapped to C++ namespasehema (this
mapping can be altered with the@amespace-map option). The following table summarizes
the mapping of XML Schema built-in types to C++ types in the C++/Hybrid mapping. Declara-
tions for these types are automatically included into each generated header file.

XML Schema type Alias inrfgfnzrsﬂpe_lcs:herra C++ type
fixed-length integral types
byte byte signed char
unsignedByte unsigned_byte unsigned char

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 53

5 Mapping for Built-In XML Schema Types

short short_ short

unsignedShort unsigned_short unsigned short

int int_ int

unsignedint unsigned_int unsigned int
long or

long long_ long long

[Section 3.5, "64-bit Integer Tygeg"

unsignedLong

unsigned_long

unsigned long or
unsigned long long

[Section 3.5, "64-bit Integer Tyge

174

174

arbitrary-length integral types
integer integer long
nonPositivelnteger non_positive_integer long

nonNegativelnteger

non_negative_integer

unsigned long

positivelnteger

positive_integer

unsigned long

negativelnteger negative_integer long
boolean types
boolean boolean bool
fixed-precision floating-point types
float float float
double double double
arbitrary-precision floating-point types
decimal decimal double
string types
std::string or char*
string string [Section 3.1, "Standard Templat

11

54

Embedded C++/Hybrid Mapping Getting Started Guide

February 2009

5 Mapping for Built-In XML Schema Types

D

D

11

11}

D

D

11°)

D

std::string orchar*
normalizedString normalized_string [Section 3.1, "Standard Templat
Library"
std::string or char*
token token [Section 3.1, "Standard Templat
Library"
std::string or char*
Name name [Section 3.1, "Standard Templat
std::string or char*
NMTOKEN nmtoken [Section 3.1, "Standard Templat
[Section 5.2, "Mapping far
NMTOKENS nmtokens [NMTOKENSNJIDREFS|
std::string orchar*
NCName ncname [Section 3.1, "Standard Templat
std::string orchar*
language language [Section 3.1, "Standard Templat
gualified name
OName gname | 5.1, "Mapping fqr
ID/IDREF types
std::string orchar*
ID id [Section 3.1, "Standard Templat
std::string orchar*
IDREF idref [Section 3.1, "Standard Templat
. [Section 5.2, "Mapping far
IDREFS idrefs [NMTOKENSNJIDREFS'|
URI types
February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 55

5 Mapping for Built-In XML Schema Types

anyURI

uri

std::string orchar*
[Section 3.1, "Standard Templat
Library"

D

binary types

base64Binary

base64_binary

[Section 5.3, "Mapping fdr
[base64Binary andhexBi- |
nary "

hexBinary

hex_binary

[Section 5.3, "Mapping far
[base64Binary andhexBi- |
nary "

date/time types

date

date

[Section 5.5, "Mapping fadate "

dateTime

date_time

[Section 5.6, "Mapping far
dateTime

duration

duration

[Section 5.7, "Mapping fqr
duration "

gDay

gday

[Section 5.8, "Mapping fagDay"|

gMonth

gmonth

Section 5.9, "Mapping far
gMonth "

gMonthDay

gmonth_day

[Section 5.10, "Mapping for
gMonthDay "

gYear

gyear

[Section 5.11, "Mapping fQr
gYear "

gYearMonth

gyear_month

[Section 5.12, "Mapping fQr
gYearMonth "|

time

time

[Section 5.13, "Mapping far

i
0]

As you can see from the table above a number of built-in XML Schema types are mapped to
fundamental C++ types suchias or bool . All string-based XML Schema types are mapped

or char* , depending on whether the use of STL is enabled or not. A
number of built-in types, such §Name the binary types, and the date/time types, do not have
suitable fundamental or standard C++ types to map to. These types are implemented from scratch

to eitherstd::string

in the XSD/e runtime and are discussed in more detail in the subsequent sections.

56

Embedded C++/Hybrid Mapping Getting Started Guide

February 2009

5 Mapping for Built-In XML Schema Types

In cases where the schema calls for an inheritance from a built-in type which is mapped to a
fundamental C++ type, a special base type corresponding to the fundamental type and defined in
thexml_schema namespace is used (C++ does not allow inheritance from fundamental types).
For example:

<complexType name="measure">
<simpleContent>
<extension base="int">
<attribute name="unit" type="string" use="required"/>
</extension>
</simpleContent>
</complexType>

The corresponding object model class is shown below:

/I measure (fixed-length)
I
class measure: public xml_schema::int_base

{
public:
measure ();
measure (const measure&);
measure& operator= (const measure&);

/I unit

I

const std::string&
unit () const;

std::string&
unit ();

void
unit (const std::string&);

private:

};...

Thexml_schema::int_base class has the following interface:
namespace xml_schema

{

class int_base

{
public:
int_base ();

int_base&
operator= (int);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 57

5 Mapping for Built-In XML Schema Types

public:
int
base value () const;

int&
base value ();

void
base_value (int);

operator const int& () const;
operator int& ();
I3
}

All other base types for fundamental C++ types have similar interfaces. The only exception is the
base type for string types when STL is disabled:

namespace xml_schema

{

class string_base

{
public:
string_base ();

string_base&
operator= (char* x)

public:
const char*
base value () const;

char*
base value ();

void
base_value (char* x);

operator const char* () const;
operator char* ();
I3
}

Note that thestring_base object assumes ownership of the strings passed to the assignment
operator and thbase_value() = modifier.

58 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.1 Mapping for QName

5.1 Mapping for QNane

The QNamebuilt-in XML Schema type is mapped to theame class which represents an XML
qualified name. With STL enabled (Section 3.1, "Standard Template Liprary"), it has the follow-
ing interface:

namespace xml_schema
{
class gname
{
public:
/I The default constructor creates an uninitialized object.
/I Use madifiers to initialize it.
I
gname ();

explicit
gname (const std::string& name);
gname (const std::string& prefix, const std::string& name);

void
swap (gnameg&);

const std::string&
prefix () const;

std::string&
prefix ();

void
prefix (const std::string&);

const std::string&
name () const;

std::string&
name ();

void
name (const std::string&);

5

bool
operator== (const gnameg&, const gnameg&);

bool
operator!= (const gnameé&, const gnameg&);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 59

5.1 Mapping for QName

When STL is disabled and C++ exceptions are enabled (Section 3.3, "C++ Excgptions"), the
gname type has the following interface:

namespace xml_schema
{
class gname
{
public:
/I The default constructor creates an uninitialized object.
/I Use madifiers to initialize it.
I
gname ();

explicit
gname (char* name);
gname (char* prefix, char* name);

void
swap (gnameg&);

private:
gname (const gnameg&);

gnameé&
operator= (const gnameg&);

public:
char*
prefix ();

const char*
prefix () const;

void
prefix (char*);

void
prefix_copy (const char*);

char*
prefix_detach ();

public:
char*
name ();

const char*
name () const;

void
name (char*);

60 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.1 Mapping for QName

void
name_copy (const char*);

char*
name_detach ();

h

bool
operator== (const gnameg&, const gnameg&);

bool
operator!= (const gnameé&, const gnameg&);

}

The modifier functions and constructors that havecttee* argument assume ownership of the
passed strings which should be allocated with opersgar char[] and will be deallocated
with operatordelete[] by thegname object. If you detach the underlying prefix or name
strings, then they should eventually be deallocated with opetaliete|]

Finally, if both STL and C++ exceptions are disabled,ghame type has the following inter-
face:

namespace xml_schema
class gname
public:
enum error
error_none,
error_no_memory

g

/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.

1

gname ();

explicit
gname (char* name);
gname (char* prefix, char* name);

void
swap (gnameg&);

private:
gname (const gnameg&);

gnameé&

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 61

5.2 Mapping for NMTOKENS and IDREFS

operator= (const gnameg&);

public:
char*
prefix ();

const char*
prefix () const;

void
prefix (char*);

error
prefix_copy (const char*);

char*
prefix_detach ();

public:
char*
name ();

const char*
name () const;

void
name (char*);

error
name_copy (const char*);

char*
name_detach ();

h

bool
operator== (const gnameg&, const gnameg&);

bool
operator!= (const gnameé&, const gnameg&);

5.2 Mapping for NMTOKENS and | DREFS

The NMTOKEN®SNd IDREFS built-in XML Schema types are mapped to the string sequence
type which is discussed|in Section 4.3, "Attributes and Elements".

62 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.3 Mapping for base64Binary and hexBinary

5.3 Mapping for base64Bi nary and hexBi nary

Thebase64Binary andhexBinary built-in XML Schema types are mapped to bugfer
class. With C++ exceptions enabl¢d (Section 3.3, "C++ Excegtions"), it has the following inter-
face:

namespace xml_schema

{
class buffer
{
public:
class bounds {}; // Out of bounds exception.
public:
buffer ();
explicit
buffer (size_t size);
buffer (size_t size, size_t capacity);
buffer (const void* data, size t size);
buffer (const void* data, size_t size, size_t capacity);
enum ownership_value { assume_ownership };
/I This constructor assumes ownership of the memory passed.
i
buffer (void* data, size_t size, size_t capacity, ownership_value);
private:
buffer (const buffer&);
buffer&
operator= (const buffer&);
public:
void
attach (void* data, size_t size, size_t capacity);
void*
detach ();
void
swap (buffer&);
public:

size t
capacity () const;

bool
capacity (size_t);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 63

5.3 Mapping for base64Binary and hexBinary

public:
size t
size () const;

bool
size (size_t);

public:
const char*
data () const;

char*
data ();

const char*
begin () const;

char*
begin ();

const char*
end () const;

char*
end ();
h

bool
operator== (const buffer&, const buffer&);

bool
operator!= (const buffer&, const buffer&);

}

The last constructor and thgtach() member function make thmuffer instance assume the
ownership of the memory block pointed to by ttega argument and eventually release it by
calling operator delete() . Thedetach() member function detaches and returns the
underlying memory block which should eventually be released by cabiperator
delete()

The capacity() andsize() modifier functions returrirue if the underlying buffer has
moved. Thebounds exception is thrown if the constructor attach() member function
arguments violate th@@ize <= capacity) constraint.

If C++ exceptions are disabled, theffer class has the following interface:

64 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

namespace xml_schema

{

class buffer

public:
enum error

{

error_none,
error_bounds,
error_no_memory

%
buffer ();

private:
buffer (const buffer&);

buffer&

operator= (const buffer&);

public:
error

attach (void* data, size_t size, size_t capacity);

void*
detach ();

void

swap (buffer&);
public:

size t

capacity () const;

error
capacity (size_t);

error

capacity (size_t, bool& moved);

public:
size t
size () const;

error
size (size_t);

error

size (size_t, bool& moved);

public:

February 2009

5.3 Mapping for base64Binary and hexBinary

Embedded C++/Hybrid Mapping Getting Started Guide 65

5.4 Time Zone Representation

const char*
data () const;

char*
data ();

const char*
begin () const;

char*
begin ();

const char*
end () const;

char*
end ();
h

bool
operator== (const buffer&, const buffer&);

bool
operator!= (const buffer&, const buffer&);

5.4 Time Zone Representation

The date , dateTime , gDay, gMonth, gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following
time_zone base class is used to represent this information:

namespace xml_schema

{

class time_zone

{
public:
time_zone ();
time_zone (short hours, short minutes);

bool
zone_present () const;

void
zone_reset ();

short
zone_hours () const;

void

66 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.5 Mapping for date

zone_hours (short);

short
zone_minutes () const;

void
zone_minutes (short);

I3

bool
operator== (const time_zoneg&, const time_zone&);

bool
operator!= (const time_zone&, const time_zoneg&);

}

The zone_present() accessor function returrtsue if the time zone is specified. The
zone_reset() modifier function resets the time zone object to the "not specified" state. If the
time zone offset is negative then both hours and minutes components should be negative.

5.5 Mapping for dat e

The date built-in XML Schema type is mapped to tdate class which represents a year, a
day, and a month with an optional time zone. Its interface is presented below. For more informa-
tion on the basgml_schema::time_zone class refer tp Section 5.4, "Time Zone Reprégsen-

ftation’].

namespace xml_schema

{

class date: public time_zone
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
date ();

date (int year, unsigned short month, unsigned short day);

date (int year, unsigned short month, unsigned short day,
short zone_hours, short zone_minutes);

int
year () const;

void
year (int);

unsigned short

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 67

5.6 Mapping for dateTime

month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);
I3

bool
operator== (const date&, const date&);

bool
operator!= (const date&, const date&);

5.6 Mapping for dat eTi ne

The dateTime built-in XML Schema type is mapped to tbate_time class which repre-

sents a year, a month, a day, hours, minutes, and seconds with an optional time zone. Its interface
is presented below. For more information on the basie schema::time_zone class refer
to[Section 5.4, "Time Zone Representation”.

namespace xml_schema

{

class date_time: public time_zone
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
date_time ();

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds);

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds, short zone_hours, short zone_minutes);

int
year () const;

void
year (int);

68 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.7 Mapping for duration

unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);

unsigned short
hours () const;

void
hours (unsigned short);

unsigned short
minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

h

bool
operator== (const date_time&, const date_time&);

bool
operator!= (const date_time&, const date_time&);

5.7 Mapping fordur at i on

Theduration built-in XML Schema type is mapped to tteration class which represents
a potentially negative duration in the form of years, months, days, hours, minutes, and seconds.
Its interface is presented below.

namespace xml_schema

{

class duration

{
public:
/I The default constructor creates an uninitialized object.

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 69

5.7 Mapping for duration

/I Use modifiers to initialize it.
1
duration ();

duration (bool negative,
unsigned int years, unsigned int months, unsigned int days,
unsigned int hours, unsigned int minutes, double seconds);

bool
negative () const;

void
negative (bool);

unsigned int
years () const;

void
years (unsigned int);

unsigned int
months () const;

void
months (unsigned int);

unsigned int
days () const;

void
days (unsigned int);

unsigned int
hours () const;

void
hours (unsigned int);

unsigned int
minutes () const;

void
minutes (unsigned int);

double
seconds () const;

void
seconds (double);

70 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.8 Mapping for gDay

bool
operator== (const duration&, const duration&);

bool
operator!= (const duration&, const duration&);

5.8 Mapping for gDay

ThegDay built-in XML Schema type is mapped to thday class which represents a day of the
month with an optional time zone. Its interface is presented below. For more information on the
basexml_schema::time_zone class refer tp Section 5.4, "Time Zone Representation”.

namespace xml_schema

{

class gday: public time_zone

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
I

gday ();

explicit
gday (unsigned short day);

gday (unsigned short day, short zone_hours, short zone_minutes);

unsigned short
day () const;

void
day (unsigned short);
3

bool
operator== (const gday&, const gday&);

bool
operator!= (const gday&, const gday&);
}

5.9 Mapping for ghont h

The gMonth built-in XML Schema type is mapped to tgemnonth class which represents a
month of the year with an optional time zone. Its interface is presented below. For more informa-
tion on the basgml_schema::time_zone class refer tp Section 5.4, "Time Zone Reprégsen-

ftation’

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 71

5.10 Mapping for gMonthDay

namespace xml_schema

{

class gmonth: public time_zone

{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
gmonth ();

explicit
gmonth (unsigned short month);

gmonth (unsigned short month,
short zone_hours, short zone_minutes);

unsigned short
month () const;

void
month (unsigned short);

h

bool
operator== (const gmonth&, const gmonth&);

bool
operator!= (const gmonthé&, const gmonth&);

5.10 Mapping for ghont hDay

ThegMonthDay built-in XML Schema type is mapped to thmonth_day class which repre-
sents a day and a month of the year with an optional time zone. Its interface is presented below.

For more information on the basenl_schema::time_zone class refer tg Section 5.4,
['Time Zone Representatign".

namespace xml_schema

{

class gmonth_day: public time_zone

{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
gmonth_day ();

gmonth_day (unsigned short month, unsigned short day);

gmonth_day (unsigned short month, unsigned short day,

72 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.11 Mapping for gYear

short zone_hours, short zone_minutes);

unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);
I3

bool
operator== (const gmonth_day&, const gmonth_day&);

bool
operator!= (const gmonth_day&, const gmonth_day&);

5.11 Mapping forgYear

ThegYear built-in XML Schema type is mapped to thgear class which represents a year
with an optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer tp Section 5.4, "Time Zone Representation”.

namespace xml_schema

{

class gyear: public time_zone

public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1

gyear ();

explicit
gyear (int year);

gyear (int year, short zone_hours, short zone_minutes);

int
year () const;

void
year (int);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 73

5.12 Mapping for gYearMonth

bool
operator== (const gyear&, const gyear&);

bool
operator!= (const gyear&, const gyear&);

5.12 Mapping forgYear Mont h

The gYearMonth built-in XML Schema type is mapped to tggear_month class which
represents a year and a month with an optional time zone. Its interface is presented below. For
more information on the basenl_schema::time_zone class refer t¢ Section 5.4, "Time

[Zone Representatign”.

namespace xml_schema

{

class gyear_month: public time_zone

{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
gyear_month ();

gyear_month (int year, unsigned short month);

gyear_month (int year, unsigned short month,
short zone_hours, short zone_minutes);

int

year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

I3

bool
operator== (const gyear_month&, const gyear_month&);

bool
operator!= (const gyear_month&, const gyear_month&);

74 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

5.13 Mapping for time

5.13 Mapping fort i me

The time built-in XML Schema type is mapped to thiene class which represents hours,
minutes, and seconds with an optional time zone. Its interface is presented below. For more infor-
mation on the baseml_schema::time_zone class refer tp Section 5.4, "Time Zone Rgpre-

[sentationt"

namespace xml_schema

{

class time: public time_zone
{
public:
/I The default constructor creates an uninitialized object.
/I Use modifiers to initialize it.
1
time ();

time (unsigned short hours, unsigned short minutes, double seconds);

time (unsigned short hours, unsigned short minutes, double seconds,
short zone_hours, short zone_minutes);

unsigned short
hours () const;

void
hours (unsigned short);

unsigned short
minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

3

bool
operator== (const time&, const time&);

bool
operator!= (const time&, const time&);

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 75

6 Parsing and Serialization

6 Parsing and Serialization

As was mentioned in the introduction, the C++/Hybrid mapping uses the C++/Parser and
C++/Serializer mappings for XML parsing and serialization. If your parsing and serialization
requirements are fairly basic, for example, parsing from and serializing to a file or a memory
buffer, then you don’t need to concern yourself with these two underlying mappings. On the other
hand, the C++/Parser and C++/Serializer mappings provide well-defined APIs which allow a
great amount of flexibility that may be useful in certain situations. In such cases, you may need to
get an understanding of how the C++/Parser and C++/Serializer mappings work.[See the Embed-
[ded C++/Parser Mapping Getting Started Guide and the Embedded C++/Serializer Mapping
|Getting Started Guidle for more detailed information on these mappings.

For each type defined in XML Schema, the C++/Parser and C++/Serializer mappings generate a
parser skeleton class and serializer skeleton class, respectively. These classes manage
parsing/serialization state, convert data between text and C++ types, and perform XML Schema
validation, if enabled. Parser skeletons deliver the parsed data and serializer skeletons request the
data to be serialized with callbacks. These callbacks are implemented by parser and serializer
implementation classes that are derived from the skeletons. If the application uses the C++/Parser
and C++/Serializer mappings directly, these implementation classes are normally written by the
application developer to perform some application-specific actions. In case of the C++/Hybrid
mapping, these implementations are automatically generated by the XSD/e compiler to parse
XML to object models and to serialize object models to XML. To request the generation of parser

skeletons and implementations, you need to specify -thenerate-parser XSD/e
command line option. Similarly, to generate serializer skeletons and implementations, you will
need to use thegenerate-serializer option.

Before an XML document can be parsed or serialized, the individual parser and serializer imple-
mentations need to be instantiated and connected to each other. Again, if the application uses the
C++/Parser and C++/Serializer mappings directly, this is done by the application developer.
While you can also do this with the generated C++/Hybrid parser and serializer implementations,
it is easier to request the generation of parser and serializer aggregate classes with the
--generate-aggregate options. Aggregate classes instantiate and connect all the necessary
individual parser and serializer implementations for a particular root element or type. Consider
again thehello.xsd schema frorp Chapter 2, "Hello World Example":

<?xml version="1.0"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:complexType name="hello">
<xs:sequence>
<xs:element name="greeting" type="xs:string"/>
<xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

76 Embedded C++/Hybrid Mapping Getting Started Guide February 2009

http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml
http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml

6 Parsing and Serialization

<xs:element name="hello" type="hello"/>

</xs:schema>

If we compile this schema with thegenerate-parser , --generate-serializer ,
and--generate-aggregate options, we will have two aggregate classeslo _paggr
and hello_saggr , generated for the roohello element. The interface of the

hello_paggr class is presented below:

class hello_paggr

{
public:

hello_paggr ();

void
pre ();

hello*
post ();

hello_pimpl&
root_parser ();

static const char*
root_name ();

static const char*
root_namespace ();

%

Thepre() andpost() functions call the corresponding callbacks on the root parser imple-
mentation. Theroot_parser() function returns the root parser implementation. The
root name() androot_namespace() functions return the root element name and names-
pace, respectively.

As was shown ip Chapter 2, "Hello World Example", we can use this parser aggregate to create
the document parser (supplied by the C++/Parser mapping) and perform the parsing:

hello_paggr hello_p;

xml_schema::document_pimpl doc_p (hello_p.root_parser (),
hello_p.root_name ());

hello_p.pre ();

doc_p.parse ("hello.xml");

hello* h = hello_p.post ();

February 2009 Embedded C++/Hybrid Mapping Getting Started Guide 77

6 Parsing and Serialization

For more information on thélocument_pimpl class, including the other variants of the
parse() function as well as error handling during parsing,[see Chapter 7, "Document Parser
[and Error Handling" in the Embedded C++/Parser Mapping Getting Started Guide.

The interface of théello_saggr serializer aggregate mirrors thattedllo_paggr and is
presented below:

class hello_saggr

{
public:
hello_saggr ();

void
pre (const hello&);

v