
XML Schema C++/Tree Mapping User Manual

Revision 1.2.3

July 2006

Table of Contents
................... 1Preface
............... 1About This Document
............... 1Copyright and License
............... 1Acknowledgements
.................. 11 Introduction
................ 21.1 Hello World
...... 21.1.1 Writing XML Document and Schema Definition
......... 31.1.2 Translating Schema Definition to C++
.......... 41.1.3 Implementing Application Logic
............ 41.1.4 Compiling and Running
................ 42 C++/Tree Mapping
............. 42.1 Preliminary Information
............... 42.1.1 Identifiers
.............. 52.1.2 Character Type
........... 52.1.3 XML Schema Namespace
............... 52.2 Error Handling
......... 62.2.1 xml_schema::duplicate_id
.......... 62.3 Mapping for import and include
................ 62.3.1 Import
.......... 72.3.2 Inclusion with Target Namespace
......... 72.3.3 Inclusion without Target Namespace
............. 82.4 Mapping for Namespaces
........... 82.5 Mapping for Built-in Data Types
......... 112.5.1 Inheritance from Built-in Data Types
............ 122.5.2 Mapping for anyType
.......... 122.5.3 Mapping for anySimpleType
............. 132.5.4 Mapping for QName
............. 132.5.5 Mapping for IDREF
...... 162.5.6 Mapping for base64Binary and hexBinary
............. 182.6 Mapping for Simple Types
......... 192.6.1 Mapping for Derivation by Restriction
........... 202.6.2 Mapping for Enumerations
.......... 212.6.3 Mapping for Derivation by List
.......... 222.6.4 Mapping for Derivation by Union
............ 222.7 Mapping for Complex Types
......... 232.7.1 Mapping for Derivation by Extension
......... 232.7.2 Mapping for Derivation by Restriction
......... 242.8 Mapping for Local Elements and Attributes
..... 252.8.1 Mapping for Members with the One Cardinality Class
.... 262.8.2 Mapping for Members with the Optional Cardinality Class

iJuly 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

Table of Contents

..... 292.8.3 Mapping for Members with the Sequence Cardinality Class

............. 312.9 Mapping for Global Elements

............. 322.10 Mapping for Global Attributes

............ 322.11 Mapping for Anonymous Types

...... 322.11.1 Anonymous Types for Local Elements and Attributes

......... 332.11.2 Anonymous Types for Global Elements

......... 342.11.3 Anonymous Types for Global Attributes

........ 342.12 Mapping for xsi:type and Substitution Groups

..... 352.13 Mapping for any , anyAttribute , and Mixed Content Models

.................... 353 Parsing

............ 383.1 Initializing the Xerces-C++ Runtime

............... 383.2 Flags and Properties

................ 393.3 Error Handling

............ 413.3.1 xml_schema::parsing

......... 423.3.2 xml_schema::expected_element

........ 423.3.3 xml_schema::unexpected_element

........ 433.3.4 xml_schema::expected_attribute

....... 433.3.5 xml_schema::unexpected_enumerator

.......... 443.3.6 xml_schema::no_type_info

........... 443.3.7 xml_schema::not_derived

............ 453.4 Reading from a Local File or URI

............. 453.5 Reading from std::istream

......... 463.6 Reading from xercesc::DOMInputSource

............... 463.7 Reading from DOM

................... 464 Serialization

............ 484.1 Initializing the Xerces-C++ Runtime

.......... 484.2 Namespace Infomap and Character Encoding

................... 494.3 Flags

................ 504.4 Error Handling

.......... 504.4.1 xml_schema::serialization

........ 514.4.2 xml_schema::unexpected_element

........ 514.4.3 xml_schema::no_namespace_mapping

......... 514.4.4 xml_schema::no_prefix_mapping

........ 514.4.5 xml_schema::xsi_already_in_use

............. 524.5 Serializing to std::ostream

......... 524.6 Serializing to xercesc::XMLFormatTarget

............... 534.7 Serializing to DOM

............. 55Appendix A — Default and Fixed Values

July 2006ii XML Schema C++/Tree Mapping User Manual, v1.2.3

Table of Contents

Preface

About This Document

This document describes the mapping of W3C XML Schema to the C++ programming language
as implemented by CodeSynthesis XSD - an XML Schema to C++ data binding compiler. The
mapping represents information stored in XML instance documents as a statically-typed, tree-like
in-memory data structure.

Revision 1.2.3
This revision of the manual describes the C++/Tree mapping as implemented by CodeSynthesis
XSD version 2.2.0.

This document is available in the following formats: XHTML, PDF, and PostScript.

Copyright and License

Copyright © 2005-2006 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, version 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

Acknowledgements

We would like to thank Karen Arutyunov for his comments on the drafts of this manual.

1 Introduction
Vocabulary-independent APIs for accessing information stored in XML instance documents such
as DOM and SAX suffer from a number of drawbacks:

generic representation of XML instances: elements, attributes, and text
dynamic typing which leads to errors occurring at run-time rather than at compile-time
writing non-trivial code using such APIs is a daunting task
the resulting applications are hard to debug, change, and maintain

In contrast, statically-typed, vocabulary-specific mappings allow you to operate in your domain
terms instead of the generic terms of DOM or SAX. Static typing will help you catch errors at
compile-time rather than at run-time. Automatic generation of code will free you for more inter-
esting tasks (like doing something useful with the information stored in the instance document)
and minimize the effort needed to adopt your applications to changes in the document structure.

1July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

Preface

http://codesynthesis.com/products/xsd
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/index.xhtml
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.pdf
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.ps
http://codesynthesis.com/licenses/fdl-1.2.txt

A typical application that deals with XML instance documents usually performs the following
three steps: it first reads (parses) an XML instance document to an in-memory representation, it
then performs some useful computations on that representation which may involve modification
of the representation, and finally it may write (serialize) the modified in-memory representation
back to XML.

The C++/Tree mapping consists of data types that represent the given vocabulary (Chapter 2,
"C++/Tree Mapping"), a set of parsing functions that convert XML instance documents to a
tree-like in-memory data structure (Chapter 3, "Parsing"), and a set of serialization functions that
convert the in-memory representation back to XML (Chapter 4, "Serialization").

The following section shows how to create a simple application that uses the C++/Tree mapping
to parse an XML instance document and then access the resulting in-memory representation.

1.1 Hello World

The following step-by-step guide is based on the hello example which can be found in the exam-
ples/cxx/tree/hello directory of the XSD distribution.

1.1.1 Writing XML Document and Schema Definition

The first thing we need to do is to get an idea about the structure of XML instance documents we
are going to process. Our hello.xml , for example, could look like this:

<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="hello.xsd">

 <greeting>Hello</greeting>

 <name>sun</name>
 <name>earth</name>
 <name>world</name>

</hello>

Then, we can write a Schema definition for the above instance and save it into hello.xsd :

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="hello_type">
 <xsd:sequence>
 <xsd:element name="greeting" type="xsd:string"/>
 <xsd:element name="name" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

July 20062 XML Schema C++/Tree Mapping User Manual, v1.2.3

1.1 Hello World

 <xsd:element name="hello" type="hello_type"/>

</xsd:schema>

1.1.2 Translating Schema Definition to C++

Now we are ready to translate our Schema definition to C++ classes and functions that represent
our vocabulary:

$ xsd cxx-tree hello.xsd

The Schema compiler produces two C++ files: hello.hxx and hello.cxx . The following
code fragment is an approximation of what can be found in hello.hxx ; it should give you an
idea about what gets generated:

class hello_type
{
public:
 // greeting
 //
 const string&
 greeting () const;

 string&
 greeting ();

 void
 greeting (const string&);

 // name
 //
 struct name
 {
 typedef sequence<string> container;
 typedef container::iterator iterator;
 typedef container::const_iterator const_iterator;
 };

 const name::container&
 name () const;

 name::container&
 name ();

 void
 name (const name::container&);

3July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

1.1.2 Translating Schema Definition to C++

};

std::auto_ptr<hello_type>
hello (const string& uri);

1.1.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in
instance documents (driver.cxx):

#include "hello.hxx"

int
main (int argc, char* argv[])
{
 auto_ptr<hello_type> h (hello (argv[1]));

 for (hello_type::name::const_iterator i (h->name ().begin ());
 i != h->name ().end ();
 ++i)
 {
 cerr << h->greeting () << ", " << *i << "!" << endl;
 }
}

1.1.4 Compiling and Running

Finally, we can compile our application and run it on the instance document:

$ g++ -o driver driver.cxx hello.cxx -lxerces-c
$./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!

2 C++/Tree Mapping

2.1 Preliminary Information

2.1.1 Identifiers

XML Schema names may happen to be reserved C++ keywords or contain characters that are
illegal in C++ identifiers. To avoid C++ compilation problems, such names are changed
(escaped) when mapped to C++. If an XML Schema name is a C++ keyword, the "_" suffix is
added to it. All character of an XML Schema name that are not allowed in C++ identifiers are
replaced with "_".

July 20064 XML Schema C++/Tree Mapping User Manual, v1.2.3

2 C++/Tree Mapping

For example, XML Schema name try would be mapped to C++ identifier try_ . Similarly,
XML Schema name strange.na-me would be mapped to C++ identifier strange_na_me .

2.1.2 Character Type

The code that implements the mapping, depending on the --char-type option, is generated
using either char or wchar_t as the character type. In this document code samples use symbol
C to refer to the character type you have selected when translating your schemas, for example
std::basic_string<C> .

2.1.3 XML Schema Namespace

The mapping relies on some predefined types, classes, and functions that are logically defined in
the XML Schema namespace reserved for the XML Schema language
(http://www.w3.org/2001/XMLSchema). By default, this namespace is mapped to C++
namespace xml_schema . It is automatically accessible from a C++ compilation unit that
includes a header file generated from an XML Schema definition.

Note that, if desired, the default mapping of this namespace can be changed as described in
Section 2.4, "Mapping for Namespaces".

2.2 Error Handling

The mapping uses the C++ exception handling mechanism as a primary way of reporting error
conditions. All exceptions that are specified in this mapping derive from
xml_schema::exception which itself is derived from std::exception :

struct exception: virtual std::exception
{
 friend
 std::basic_ostream<C>&
 operator<< (std::basic_ostream<C>& os, const exception& e)
 {
 e.print (os);
 return os;
 }

protected:
 virtual void
 print (std::basic_ostream<C>&) const = 0;
};

The exception hierarchy supports "virtual" operator<< which allows you to obtain diagnostics
corresponding to the thrown exception using the base exception interface. For example:

5July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.2 Error Handling

try
{
 ...
}
catch (const xml_schema::exception& e)
{
 cerr << e << endl;
}

The following sub-sections describe exceptions thrown by the types that constitute the tree repre-
sentation. Section 3.3, "Error Handling" of Chapter 3, "Parsing" describes exceptions and error
handling mechanisms specific to the parsing functions. Section 4.4, "Error Handling" of Chapter
4, "Serialization" describes exceptions and error handling mechanisms specific to the serialization
functions.

2.2.1 xml_schema::duplicate_id

struct duplicate_id: virtual exception
{
 duplicate_id (const std::basic_string<C>& id);

 const std::basic_string<C>&
 id () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::duplicate_id is thrown when a conflicting instance of
xml_schema::id (see Section 2.5, "Mapping for Built-in Data Types") is added to a tree. The
offending ID value can be obtained using the id function.

2.3 Mapping for import and include

2.3.1 Import

The XML Schema import element is mapped to the C++ Preprocessor #include directive.
The value of the schemaLocation attribute is used to derive the name of the header file that
appears in the #include directive. For instance:

<import namespace="http://www.codesynthesis.com/test"
 schemaLocation="test.xsd"/>

is mapped to:

July 20066 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.3 Mapping for import and include

#include "test.hxx"

Note that you will need to compile imported schemas separately in order to produce correspond-
ing header files.

2.3.2 Inclusion with Target Namespace

The XML Schema include element which refers to a schema with a target namespace or
appears in a schema without a target namespace follows the same mapping rules as the import
element, see Section 2.3.1, "Import".

2.3.3 Inclusion without Target Namespace

For the XML Schema include element which refers to a schema without a target namespace
and appears in a schema with a target namespace (such inclusion sometimes called "chameleon
inclusion"), declarations and definitions from the included schema are generated in-line in the
namespace of the including schema as if they were declared and defined there verbatim. For
example, consider the following two schemas:

<-- common.xsd -->
<schema>
 <complexType name="type">
 ...
 </complexType>
</schema>

<-- test.xsd -->
<schema targetNamespace="http://www.codesynthesis.com/test">
 <include schemaLocation="common.xsd"/>
</schema>

The fragment of interest from the generated header file for text.xsd would look like this:

// test.hxx
namespace test
{
 class type
 {
 ...
 };
}

7July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.3.2 Inclusion with Target Namespace

2.4 Mapping for Namespaces

An XML Schema namespace is mapped to one or more nested C++ namespaces. XML Schema
namespaces are identified by URIs. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with ’/ ’ as the name separator. For instance:

<schema targetNamespace="http://www.codesynthesis.com/system/test">
 ...
</schema>

is mapped to:

namespace system
{
 namespace test
 {
 ...
 }
}

The default mapping of namespace URIs to C++ namespace names can be altered using the
--namespace-regex option. See the compiler manual for more information.

2.5 Mapping for Built-in Data Types

The mapping of XML Schema built-in data types to C++ types is summarized in the table below.

XML Schema type
Alias in the xml_schema

namespace
C++ type

anyType and anySimpleType types

anyType type Section 2.5.2, "Mapping for anyType "

anySimpleType simple_type
Section 2.5.3, "Mapping for anySimple-
Type "

fixed-length integral types

byte byte signed char

unsignedByte unsigned_byte unsigned char

short short_ short

unsignedShort unsigned_short unsigned short

int int_ int

July 20068 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.4 Mapping for Namespaces

unsignedInt unsigned_int unsigned int

long long_ long long

unsignedLong unsigned_long unsigned long long

arbitrary-length integral types

integer integer long long

nonPositiveInteger non_positive_integer long long

nonNegativeInteger non_negative_integer long long

positiveInteger positive_integer long long

negativeInteger negative_integer long long

boolean types

boolean boolean bool

fixed-length floating-point types

float float_ float

double double_ double

arbitrary-length floating-point types

decimal decimal long double

string types

string string type derived from std::basic_string

normalizedString normalized_string type derived from string

token token type derived from normalized_string

Name name type derived from token

NMTOKEN nmtoken type derived from token

NMTOKENS nmtokens type derived from sequence<nmtoken>

NCName ncname type derived from name

language language type derived from token

qualified name

QName qname Section 2.5.4, "Mapping for QName"

ID/IDREF types

ID id type derived from ncname

9July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5 Mapping for Built-in Data Types

IDREF idref Section 2.5.5, "Mapping for IDREF"

IDREFS idrefs type derived from sequence<idref>

URI types

anyURI uri type derived from std::basic_string

binary types

base64Binary base64_binary Section 2.5.6, "Mapping for
base64Binary and hexBinary " hexBinary hex_binary

date/time types

date date type derived from std::basic_string

dateTime date_time type derived from std::basic_string

duration duration type derived from std::basic_string

gDay day type derived from std::basic_string

gMonth month type derived from std::basic_string

gMonthDay month_day type derived from std::basic_string

gYear year type derived from std::basic_string

gYearMonth year_month type derived from std::basic_string

time time type derived from std::basic_string

entity types

ENTITY entity type derived from name

ENTITIES entities type derived from sequence<entity>

All XML Schema built-in types are mapped to C++ classes that are derived from the
xml_schema::simple_type class except where the mapping is to a fundamental C++ type.

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector .

July 200610 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5 Mapping for Built-in Data Types

2.5.1 Inheritance from Built-in Data Types

In cases where the mapping calls for an inheritance from a built-in type which is mapped to a
fundamental C++ type, a proxy type is used instead of the fundamental C++ type (C++ does not
allow inheritance from fundamental types). For instance:

<simpleType name="my_int">
 <restriction base="int"/>
</simpleType>

is mapped to:

class my_int: public fundamental_base<int>
{
 ...
};

The fundamental_base class template provides a close emulation (though not exact) of a
fundamental C++ type. It is defined in an implementation-specific namespace and has the follow-
ing interface:

template <typename X>
class fundamental_base: public simple_type
{
public:
 fundamental_base ();
 fundamental_base (X)
 fundamental_base (const fundamental_base&)

public:
 fundamental_base&
 operator= (const X&);

public:
 operator const X & () const;
 operator X& ();

 template <typename Y>
 operator Y () const;

 template <typename Y>
 operator Y () const;
};

11July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.1 Inheritance from Built-in Data Types

2.5.2 Mapping for anyType

The XML Schema anyType built-in data type is mapped to the xml_schema::type C++
class:

class type
{
public:
 virtual
 ~type ();

public:
 type ();
 type (const type&);

public:
 type&
 operator= (const type&);

public:
 virtual type*
 _clone () const;

 // DOM association.
 //
public:
 const xercesc::DOMNode*
 _node () const;

 xercesc::DOMNode*
 _node ();
};

2.5.3 Mapping for anySimpleType

The XML Schema anySimpleType built-in data type is mapped to the
xml_schema::simple_type C++ class:

class simple_type: public type
{
public:
 simple_type ();
 simple_type (const simple_type&);

public:
 simple_type&
 operator= (const simple_type&);

July 200612 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.2 Mapping for anyType

public:
 virtual simple_type*
 _clone () const;
};

2.5.4 Mapping for QName

The XML Schema QName built-in data type is mapped to the xml_schema::qname C++
class:

class qname: public simple_type
{
public:
 qname (const uri&, const ncname&);
 qname (const qname&);

public:
 qname&
 operator= (const qname&);

public:
 virtual qname*
 _clone () const;

public:
 const uri&
 namespace_ () const;

 const ncname&
 name () const;
};

2.5.5 Mapping for IDREF

The XML Schema IDREF built-in data type is mapped to the xml_schema::idref C++
class. This class implements the smart pointer C++ idiom:

class idref: public ncname
{
public:
 idref (const C* s);
 idref (const C* s, std::size_t n);
 idref (std::size_t n, C c);
 idref (const std::basic_string<C>&);
 idref (const std::basic_string<C>&,
 std::size_t pos,
 std::size_t n = npos);

public:

13July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.4 Mapping for QName

 idref (const idref&);

public:
 virtual idref*
 _clone () const;

public:
 idref&
 operator= (C c);

 idref&
 operator= (const C* s);

 idref&
 operator= (const std::basic_string<C>&)

 idref&
 operator= (const idref&);

public:
 const type*
 operator-> () const;

 type*
 operator-> ();

 const type&
 operator* () const;

 type&
 operator* ();

 const type*
 get () const;

 type*
 get ();

 // Conversion to bool.
 //
public:
 typedef void (idref::*bool_convertible)();
 operator bool_convertible () const;
};

The object, idref instance refers to, is the immediate container of the matching id instance.
For example, with the following instance document and schema:

July 200614 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.5 Mapping for IDREF

<!-- test.xml -->
<root>
 <object id="obj-1" text="hello"/>
 <reference>obj-1</reference>
</root>

<!-- test.xsd -->
<schema>
 <complexType name="object_type">
 <attribute name="id" type="ID"/>
 <attribute name="text" type="string"/>
 </complexType>

 <complexType name="root_type">
 <sequence>
 <element name="object" type="object_type"/>
 <element name="reference" type="IDREF"/>
 </sequence>
 </complexType>

 <element name="root" type="root_type"/>
</schema>

The ref instance in the code below will refer to an object of type object_type :

root_type& root = ...;
xml_schema::idref& ref (root.reference ());
object_type& obj (dynamic_cast<object_type&> (*ref));
cout << obj.text () << endl;

The smart pointer interface of the idref class always returns a pointer or reference to
xml_schema::type . This means that you will need to manually cast such pointer or reference
to its real (dynamic) type before you can use it (unless all you need is the base interface provided
by xml_schema::type). As a special extension to the XML Schema language, the mapping
supports static typing of idref references by employing the refType extension attribute. The
following example illustrates this mechanism:

<!-- test.xsd -->
<schema
 xmlns:xse="http://www.codesynthesis.com/xmlns/xml-schema-extension">

 ...

 <element name="reference" type="IDREF" xse:refType="object_type"/>

 ...

</schema>

15July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.5 Mapping for IDREF

With this modification we do not need to do manual casting anymore:

root_type& root = ...;
root_type::reference::type& ref (root.reference ());
object_type& obj (*ref);
cout << ref->text () << endl;

2.5.6 Mapping for base64Binary and hexBinary

The XML Schema base64Binary and hexBinary built-in data types are mapped to the
xml_schema::base64_binary and xml_schema::hex_binary C++ classes, respec-
tively. The base64_binary and hex_binary classes support a simple buffer abstraction by
inheriting from the xml_schema::buffer class:

class bounds: public virtual exception
{
public:
 virtual const char*
 what () const throw ();
};

class buffer
{
public:
 typedef std::size_t size_t;

public:
 buffer (size_t size = 0);
 buffer (size_t size, size_t capacity);
 buffer (const void* data, size_t size);
 buffer (const void* data, size_t size, size_t capacity);
 buffer (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

public:
 buffer (const buffer&);

 buffer&
 operator= (const buffer&);

 void
 swap (buffer&);

public:
 size_t
 capacity () const;

 bool

July 200616 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.6 Mapping for base64Binary and hexBinary

 capacity (size_t);

public:
 size_t
 size () const;

 bool
 size (size_t);

public:
 const char*
 data () const;

 char*
 data ();

 const char*
 begin () const;

 char*
 begin ();

 const char*
 end () const;

 char*
 end ();
};

If the assume_ownership argument to the constructor is true , the instance assumes the
ownership of the memory block pointed to by the data argument and will eventually release it
by calling operator delete . The capacity and size modifier functions return true if
the underlying buffer has moved.

The bounds exception is thrown if the constructor arguments violate the (size <= capac-
ity) constraint.

The base64_binary and hex_binary classes support the buffer interface and perform
automatic decoding/encoding from/to the Base64 and Hex formats, respectively:

class base64_binary: public simple_type, public buffer
{
public:
 base64_binary (size_t size = 0);
 base64_binary (size_t size, size_t capacity);
 base64_binary (const void* data, size_t size);
 base64_binary (const void* data, size_t size, size_t capacity);
 base64_binary (void* data,
 size_t size,
 size_t capacity,

17July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.5.6 Mapping for base64Binary and hexBinary

 bool assume_ownership);

public:
 base64_binary (const base64_binary&);

 base64_binary&
 operator= (const base64_binary&);

 virtual base64_binary*
 _clone () const;

public:
 std::basic_string<C>
 encode () const;
};

class hex_binary: public simple_type, public buffer
{
public:
 hex_binary (size_t size = 0);
 hex_binary (size_t size, size_t capacity);
 hex_binary (const void* data, size_t size);
 hex_binary (const void* data, size_t size, size_t capacity);
 hex_binary (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

public:
 hex_binary (const hex_binary&);

 hex_binary&
 operator= (const hex_binary&);

 virtual hex_binary*
 _clone () const;

public:
 std::basic_string<C>
 encode () const;
};

2.6 Mapping for Simple Types

An XML Schema simple type is mapped to a C++ class with the same name as the simple type.
The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The _clone function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance

July 200618 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.6 Mapping for Simple Types

may differ (see Section 2.12, "Mapping for xsi:type and Substitution Groups"). For instance:

<simpleType name="object">
 ...
</simpleType>

is mapped to:

class object: ...
{
public:
 object (const object&);

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;

 ...

};

The base class specification and the rest of the class definition depend on the type of derivation
used to define the simple type.

2.6.1 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defined a public
constructor with the base type as its single argument. For instance:

<simpleType name="object">
 <restriction base="base">
 ...
 </restriction>
</simpleType>

is mapped to:

class object: public base
{
public:
 object (const base&);
 object (const object&);

19July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.6.1 Mapping for Derivation by Restriction

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;
};

2.6.2 Mapping for Enumerations

XML Schema restriction by enumeration is mapped to a C++ class which behaves similar to C++
enum. Each XML Schema enumeration element is mapped to a C++ enumerator with the name
derived from the value attribute and defined in the class scope. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defined a public
constructor that can be called with one of the enumerators as its single argument, a public assign-
ment operator that can be used to assign the value of one of the enumerators, and a public implicit
conversion operator to an implementation-specific integral type. For instance:

<simpleType name="color">
 <restriction base="string">
 <enumeration value="red"/>
 <enumeration value="green"/>
 <enumeration value="blue"/>
 </restriction>
</simpleType>

is mapped to:

class color
{
public:
 enum <implementation-specific name>
 {
 red,
 green,
 blue
 };

public:
 color (<implementation-specific name>);
 color (const color&);

public:
 color&
 operator= (<implementation-specific name>);

 color&
 operator= (const color&);

July 200620 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.6.2 Mapping for Enumerations

public:
 virtual color*
 _clone () const;

public:
 operator <implementation-specific name> () const;
};

2.6.3 Mapping for Derivation by List

XML Schema derivation by list is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping for anySimpleType ") and a suit-
able sequence type. The list item type becomes the element type of the sequence. In addition to
the members described in Section 2.6, "Mapping for Simple Types", the resulting C++ class
defines a public default constructor. For instance:

<simpleType name="int_list">
 <list itemType="int"/>
</simpleType>

is mapped to:

class int_list: public simple_type,
 public sequence<int>
{
public:
 int_list ();
 int_list (const int_list&);

public:
 int_list&
 operator= (const int_list&);

public:
 virtual int_list*
 _clone () const;
};

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector .

21July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.6.3 Mapping for Derivation by List

2.6.4 Mapping for Derivation by Union

XML Schema derivation by union is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping for anySimpleType ") and
std::basic_string<C> . In addition to the members described in Section 2.6, "Mapping for
Simple Types", the resulting C++ class defines a public constructor with a single argument of
type const std::basic_string<C>& . For instance:

<simpleType name="int_string_union">
 <xsd:union memberTypes="xsd:int xsd:string"/>
</simpleType>

is mapped to:

class int_string_union: public simple_type,
 public std::basic_string<C>
{
public:
 int_string_union (const std::basic_string<C>&);
 int_string_union (const int_string_union&);

public:
 int_string_union&
 operator= (const int_string_union&);

public:
 virtual int_string_union*
 _clone () const;
};

2.7 Mapping for Complex Types

An XML Schema complex type is mapped to a C++ class with the same name as the complex
type. The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The _clone function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance
may differ (see Section 2.12, "Mapping for xsi:type and Substitution Groups"). Additionally,
the resulting C++ class defines a public constructor that takes an initializer for each member of
the complex type and all its base types that belongs to the One cardinality class (see Section 2.8,
"Mapping for Local Elements and Attributes"). For instance:

July 200622 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.7 Mapping for Complex Types

<complexType name="object">
 <sequence>
 <element name="one" type="boolean"/>
 <element name="optional" type="int" minOccurs="0"/>
 <element name="sequence" type="string" maxOccurs="unbounded"/>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 object (const bool& one);
 object (const object&);

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;

 ...

};

If an XML Schema complex type is not explicitly derived from any type, the resulting C++ class
is derived from xml_schema::type . In cases where an XML Schema complex type is
defined using derivation by extension or restriction, the resulting C++ base class specification
depends on the type of derivation and is described in the subsequent sections.

The mapping for elements and attributes that are defined in a complex type is described in
Section 2.8, "Mapping for Local Elements and Attributes".

2.7.1 Mapping for Derivation by Extension

XML Schema derivation by extension is mapped to C++ public inheritance. The base type of the
extension becomes the base type for the resulting C++ class.

2.7.2 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. XML Schema elements and
attributes defined withing restriction do not result in any definitions in the resulting C++ class.
Instead, corresponding (unrestricted) definitions are inherited from the base class. In the future

23July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.7.1 Mapping for Derivation by Extension

versions of this mapping, such elements and attributes may result in redefinitions of accessors and
modifiers to reflect their restricted semantics.

2.8 Mapping for Local Elements and Attributes

XML Schema element and attribute definitions are called local if they appear withing a complex
type definition, an element group definition, or an attribute group definitions.

Local XML Schema element and attribute definitions have the same C++ mapping. Therefore, in
this section, local elements and attributes are collectively called members.

While there are many different member cardinality combinations (determined by the use
attribute for attributes and the minOccurs and maxOccurs attributes for elements), the
mapping divides all possible cardinality combinations into three cardinality classes:

one
attributes: use == "required"
attributes: use == "optional" and has default or fixed value
elements: minOccurs == "1" and maxOccurs == "1"

optional
attributes: use == "optional" and doesn’t have default or fixed value
elements: minOccurs == "0" and maxOccurs == "1"

sequence
elements: maxOccurs > "1"

An optional attribute with a default or fixed value acquires this value if the attribute hasn’t been
specified in an instance document (see Appendix A, "Default and Fixed Values"). This mapping
places such optional attributes to the One cardinality class.

A member is mapped to a public information scope and a set of public accessor and modifier
functions. The information scope is a C++ class-scope with the same name as the member. The
main purpose of information scopes is to capture type information about members. For example:

<complexType name="object">
 <sequence>
 <element name="member" type="int"/>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 struct member

July 200624 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8 Mapping for Local Elements and Attributes

 {
 ...
 };

 ...

};

The accessor and modifier functions have the same name as the member.

The content of the information scope and signatures of the accessor and modifier functions
depend on the member’s cardinality class and are described in the following sub-sections.

2.8.1 Mapping for Members with the One Cardinality Class

For the One cardinality class, the information scope contains an alias of the member’s type with
the name type (or type_ if the member itself is named type).

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the member and can be used for read-only access. The
non-constant version returns an unrestricted reference to the member and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the member’s type.
The modifier function performs a deep-copy of its argument. For instance:

<complexType name="object">
 <sequence>
 <element name="member" type="int"/>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 // Information scope.
 //
 struct member
 {
 typedef int type;
 };

 // Accessors.
 //
 const int&
 member () const;

25July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.1 Mapping for Members with the One Cardinality Class

 int&
 member ();

 // Modifier.
 //
 void
 member (const int&);

 ...

};

The following code shows how one could use this mapping:

void
f (object& o)
{
 int i (o.member ()); // get
 object::member::type ii (o.member ()); // get

 o.member (2); // set
 o.member () = 3; // set
}

2.8.2 Mapping for Members with the Optional Cardinality Class

For the Optional cardinality class, the information scope contains an alias of the member’s type
with the name type (or type_ if the member itself is named type) and an alias of the
container type with the name container (or container_ if the member itself is named
container).

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to members. The
accessor functions come in constant and non-constant versions. The constant accessor function
returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier functions are overloaded for the member’s type and the container type. The first
modifier function expects an argument of type reference to constant of the member’s type. The
second expects an argument of type reference to constant of the container type. The modifier
functions perform a deep-copy of its argument. For instance:

July 200626 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.2 Mapping for Members with the Optional Cardinality Class

<complexType name="object">
 <sequence>
 <element name="member" type="int" minOccurs="0"/>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 // Information scope.
 //
 struct member
 {
 typedef int type;
 typedef optional<type> container;
 };

 // Accessors.
 //
 const member::container&
 member () const;

 member::container&
 member ();

 // Modifiers.
 //
 void
 member (const int&);

 void
 member (const member::container&);

 ...

};

The optional class template is defined in an implementation-specific namespace and has the
following interface:

template <typename X>
class optional
{
public:
 optional ();

 explicit
 optional (const X&);

27July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.2 Mapping for Members with the Optional Cardinality Class

 optional (const optional&);

public:
 optional&
 operator= (const X&);

 optional&
 operator= (const optional&);

 // Pointer-like interface.
 //
public:
 const X*
 operator-> () const;

 X*
 operator-> ();

 const X&
 operator* () const;

 X&
 operator* ();

 typedef void (optional::*bool_convertible) ();
 operator bool_convertible () const;

 // Get/set interface.
 //
public:
 bool
 present () const;

 const X&
 get () const;

 X&
 get ();

 void
 set (const X& y);

 void
 reset ();
};

template <typename X>
bool
operator== (const optional<X>&, const optional<X>&);

template <typename X>

July 200628 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.2 Mapping for Members with the Optional Cardinality Class

bool
operator!= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator< (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator> (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator<= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator>= (const optional<X>&, const optional<X>&);

The following code shows how one could use this mapping:

void
f (object& o)
{
 if (o.member ().present ()) // test
 {
 int i (o.member ().get ()); // get
 o.member (2); // set
 o.member ().set (3); // set
 o.member ().reset (); // reset
 }

 // Same as above but using pointer notation:
 //
 if (o.member ()) // test
 {
 int i (*o.member ()); // get
 o.member (3); // set
 *o.member () = 3; // set
 o.member () = object::member::container (); // reset
 }
}

2.8.3 Mapping for Members with the Sequence Cardinality Class

For the Sequence cardinality class, the information scope contains an alias of the member’s type
with the name type (or type_ if the member itself is named type), an alias of the container
type with the name container (or container_ if the member itself is named container),
an alias of the iterator type with the name iterator (or iterator_ if the member itself is
named iterator), and an alias of the constant iterator type with the name const_iterator

29July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.3 Mapping for Members with the Sequence Cardinality Class

(or const_iterator_ if the member itself is named const_iterator).

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function performs a deep-copy of its argument. For instance:

<complexType name="object">
 <sequence>
 <element name="member" type="int" minOccurs="unbounded"/>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 // Information scope.
 //
 struct member
 {
 typedef int type;
 typedef sequence<type> container;
 typedef container::iterator iterator;
 typedef container::const_iterator const_iterator;
 };

 // Accessors.
 //
 const member::container&
 member () const;

 member::container&
 member ();

 // Modifiers.
 //
 void
 member (const member::container&);

 ...

};

July 200630 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.8.3 Mapping for Members with the Sequence Cardinality Class

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector .

The following code shows how one could use this mapping:

void
f (object& o)
{
 object::member::container& c (o.member ());

 // Iteration.
 //
 for (object::member::iterator i (c.begin ()); i != c.end (); ++i)
 {
 int value (*i);
 }

 // Modification.
 //
 c.push_back (10);

 // Setting a new container.
 //
 object::member::container n;
 n.push_back (1);
 o.member (n);
}

2.9 Mapping for Global Elements

An XML Schema element definition is called global if it appears directly under the schema
element. A global element is a valid root of an instance document. As such, it is mapped to a set
of overloaded parsing and, optionally, serialization functions with the same name as the element.

The parsing functions read XML instance documents and return corresponding in-memory repre-
sentations. Their signatures have the following pattern (type denotes element’s type and name
denotes element’s name):

std::auto_ptr<type>
name (....);

The process of parsing, including the exact signatures of the parsing functions, is the subject of
Chapter 3, "Parsing".

31July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.9 Mapping for Global Elements

The serialization functions write in-memory representations back to XML instance documents.
Their signatures have the following pattern:

void
name (<stream type>&, const type&,);

The process of serialization, including the exact signatures of the serialization functions, is the
subject of Chapter 4, "Serialization".

2.10 Mapping for Global Attributes

An XML Schema attribute definition is called global if it appears directly under the schema
element. A global attribute does not have any mapping.

2.11 Mapping for Anonymous Types

2.11.1 Anonymous Types for Local Elements and Attributes

An XML Schema anonymous type defined for a local element or attribute is mapped to a nested
C++ class with an implementation-specific name. Such a class follows standard mapping rules for
simple and complex type definitions (see Section 2.6, "Mapping for Simple Types" and Section
2.7, "Mapping for Complex Types"). The only portable way to refer to an anonymous type of a
local element or attribute is by using the type alias in the member information scope, as
described in Section 2.8, "Mapping for Local Elements and Attributes". For example:

<complexType name="object">
 <sequence>
 <element name="member">
 <complexType>
 ...
 </complexType>
 </element>
 </sequence>
</complexType>

is mapped to:

class object: xml_schema::type
{
public:
 struct member
 {
 class <implementation-specific name>
 {
 ...
 };

July 200632 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.10 Mapping for Global Attributes

 typedef <implementation-specific name> type;
 };

 const member::type&
 member () const;

 member::type&
 member () const;

 void
 member (const member::type&)

 ...

};

and can be used like this:

void
f (object& o)
{
 object::member::type& m (o.member ()); // get
 o.member (object::member::type (....)); // set
}

2.11.2 Anonymous Types for Global Elements

An XML Schema anonymous type defined for a global element is mapped to a C++ class-scope
with the same name as the element. Inside this scope, a C++ class is defined with an implementa-
tion-specific name that follows standard mapping rules for simple and complex type definitions
(see Section 2.6, "Mapping for Simple Types" and Section 2.7, "Mapping for Complex Types").
An alias with the name type (or type_ if the element itself is named type) for this implemen-
tation-specific name is then defined withing the scope. The only portable way to refer to an
anonymous type of a global element is by using the type alias. For example:

<element name="root">
 <complexType>
 ...
 </complexType>
</element>

is mapped to:

struct root
{
 class <implementation-specific name>
 {
 ...

33July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.11.2 Anonymous Types for Global Elements

 };

 typedef <implementation-specific name> type;
};

std::auto_ptr<root::type>
root (....);

...

and can be used like this:

void
f ()
{
 std::auto_ptr<root::type> r (root (....))
}

2.11.3 Anonymous Types for Global Attributes

An XML Schema anonymous type defined for a global attribute does not have any mapping.

2.12 Mapping for xsi:type and Substitution Groups

The implementation of the mapping supports XML Schema polymorphism features (xsi:type
and substitution groups). Particularly, this means that the dynamic type of a member may be
different from its static type. Consider the following schema definition and instance document:

<!-- test.xsd -->
<schema>
 <complexType name="base">
 <attribute name="text" type="string"/>
 </complexType>

 <complexType name="derived">
 <complexContent>
 <extension base="base">
 <attribute name="extra-text" type="string"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="root_type">
 <sequence>
 <element name="item" type="base" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <element name="root" type="root_type"/>

July 200634 XML Schema C++/Tree Mapping User Manual, v1.2.3

2.12 Mapping for xsi:type and Substitution Groups

</schema>

<!-- test.xml -->
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <item text="hello"/>
 <item text="hello" extra-text="world" xsi:type="derived"/>
</root>

In the resulting in-memory representation, the container for the root::item member will have
two elements: the first element’s type will be base while the second element’s (dynamic) type
will be derived .

The _clone virtual function should be used instead of copy constructors to make copies of
members that might use polymorphism:

void
f (root& r)
{
 for (root::item::const_iterator i (r.item ().begin ());
 i != r.item ().end ()
 ++i)
 {
 std::auto_ptr<base> c (i->_clone ());
 }
}

2.13 Mapping for any, anyAttribute, and Mixed Content
Models

XML Schema any , anyAttribute , and mixed content models do not have direct C++
mapping. Instead, information in XML instance documents, corresponding to these constructs, is
accessed using generic DOM nodes that can optionally be associated with nodes of the stati-
cally-typed tree. See Section 3.2, "Flags and Properties" for more information.

3 Parsing
This chapter covers various aspects of parsing XML instance documents in order to obtain corre-
sponding tree-like in-memory representations.

Each global XML Schema element in the form:

<element name="name" type="type"/>

35July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3 Parsing

is mapped to thirteen overloaded C++ functions in the form:

// Read from a URI or a local file.
//

std::auto_ptr<type>
name (const std::basic_string<C>& uri,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (const std::basic_string<C>& uri,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (const std::basic_string<C>& uri,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from std::istream.
//

std::auto_ptr<type>
name (std::istream&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (std::istream&,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (std::istream&,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (std::istream&,
 const std::basic_string<C>& id,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>

July 200636 XML Schema C++/Tree Mapping User Manual, v1.2.3

3 Parsing

name (std::istream&,
 const std::basic_string<C>& id,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (std::istream&,
 const std::basic_string<C>& id,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from InputSource.
//

std::auto_ptr<type>
name (const xercesc::DOMInputSource&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (const xercesc::DOMInputSource&,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::auto_ptr<type>
name (const xercesc::DOMInputSource&,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from DOM.
//

std::auto_ptr<type>
name (const xercesc::DOMDocument&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

You can choose between reading an XML instance from a local file, URI, std::istream ,
xercesc::DOMInputSource , or a pre-parsed DOM instance in the form of
xercesc::DOMDocument .

37July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3 Parsing

3.1 Initializing the Xerces-C++ Runtime

Some parsing functions expect you to initialize the Xerces-C++ runtime while others initialize
and terminate it as part of their work. The general rule is as follows: if a function has any argu-
ments or return a value that is an instance of a Xerces-C++ type, then this function expects you to
initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the runtime
for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and terminate func-
tions as long as the calls are balanced.

You can instruct parsing functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize flag (see Section 3.2, "Flags and
Properties").

3.2 Flags and Properties

Parsing flags and properties are the last two arguments of every parsing function. They allow you
to fine-tune the process of instance validation and parsing. Both arguments are optional.

The following flags are recognized by the parsing functions:

xml_schema::flags::keep_dom
Keep association between DOM nodes and the resulting tree nodes.

xml_schema::flags::dont_validate
Do not validate instance documents against schemas.

xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.

You can pass several flags by combining them using the bit-wise OR operator. For example:

using xml_schema::flags;

std::auto_ptr<type> r (
 name ("test.xml", flags::keep_dom | flags::dont_validate));

Keeping association with DOM nodes is useful for dealing with type-less content such as mixed
content models, any /anyAttribute , and anyType /anySimpleType . You can access
DOM nodes using the _node functions defined in the xml_schema::type class (see Section
2.5.2, "Mapping for anyType "). Note that since DOM nodes "out-live" the parsing function call,
you need to initializing the Xerces-C++ runtime before calling one of the parsing functions with
the keep_dom flag and terminate it after the in-memory representation is destroyed (see Section
3.1, "Initializing the Xerces-C++ Runtime").

July 200638 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.1 Initializing the Xerces-C++ Runtime

By default, validation of instance documents is turned on even though parsers generated by XSD
do not assume instance documents are valid. They include a number of checks that prevent
construction of inconsistent in-memory representations. This, however, does not mean that an
instance document that was successfully parsed by the XSD-generated parsers is valid per the
corresponding schema. If an instance document is not "valid enough" for the generated parsers to
construct consistent in-memory representation, one of the exceptions defined in xml_schema
namespace is thrown (see Section 3.3, "Error Handling").

For more information on the Xerces-C++ runtime initialization refer to Section 3.1, "Initializing
the Xerces-C++ Runtime".

The xml_schema::properties class allows you to programmatically specify schema loca-
tions to be used instead of those specified with the xsi::schemaLocation and
xsi::noNamespaceSchemaLocation attributes in instance documents. The interface of
the properties class is presented below:

class properties
{
public:
 void
 schema_location (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& location);
 void
 no_namespace_schema_location (const std::basic_string<C>& location);
};

Note that all locations are relative to an instance document unless they are URIs. For example, if
you want to use a local file as your schema, then you will need to pass file:///abso-
lute/path/to/your/schema as the location argument.

3.3 Error Handling

As discussed in Section 2.2, "Error Handling", the mapping uses the C++ exception handling
mechanism as its primary way of reporting error conditions. However, to handle recoverable
parsing and validation errors and warnings, a callback interface maybe preferred by the applica-
tion.

To better understand error handling and reporting strategies employed by the parsing functions, it
is useful to know that the transformation of an XML instance document to a statically-typed tree
happens in two stages. The first stage, performed by Xerces-C++, consists of parsing an XML
document into a DOM instance. For short, we will call this stage the XML-DOM stage. Valida-
tion, if not disabled, happens during this stage. The second stage, performed by the generated
parsers, consist of parsing the DOM instance into the statically-typed tree. We will call this stage
the DOM-Tree stage. Additional checks are performed during this stage in order to prevent
construction of inconsistent tree which could otherwise happen when validation is disabled, for

39July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3 Error Handling

example.

All parsing functions except the one that operates on a DOM instance come in overloaded triples.
The first function in such a triple reports error conditions exclusively by throwing exceptions. It
accumulates all the parsing and validation errors of the XML-DOM stage and throws them in a
single instance of the xml_schema::parsing exception (described below). The second and
the third functions in the triple use callback interfaces to report parsing and validation errors and
warnings. The two callback interfaces are xml_schema::error_handler and
xercesc::DOMErrorHandler . For more information on the xercesc::DOMErrorHan-
dler interface refer to the Xerces-C++ documentation. The
xml_schema::error_handler interface is presented below:

class error_handler
{
public:
 struct severity
 {
 enum value
 {
 warning,
 error,
 fatal
 };
 };

 virtual bool
 handle (const std::basic_string<C>& id,
 unsigned long line,
 unsigned long column,
 severity,
 const std::basic_string<C>& message) = 0;

 virtual
 ~error_handler ();
};

The id argument of the error_handler::handle function identifies the resource being
parsed (e.g., a file name or URI).

By returning true from the handle function you instruct the parser to recover and continue
parsing. Returning false results in termination of the parsing process. An error with the fatal
severity level results in termination of the parsing process no matter what is returned from the
handle function. It is safe to throw an exception from the handle function.

The DOM-Tree stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the parsing functions are described in the following sub-sections.

July 200640 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3 Error Handling

3.3.1 xml_schema::parsing

struct error
{
 error (const std::basic_string<C>& id,
 unsigned long line,
 unsigned long column,
 const std::basic_string<C>& message);

 const std::basic_string<C>&
 id () const;

 unsigned long
 line () const;

 unsigned long
 column () const;

 const std::basic_string<C>&
 message () const;
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const error&);

struct errors: std::vector<error>
{
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const errors&);

struct parsing: virtual exception
{
 parsing ();
 parsing (const errors&);

 const errors&
 errors () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::parsing exception is thrown if there were parsing or validation errors
reported during the XML-DOM stage. If no callback interface was provided to the parsing func-
tion, the exception contains a list of errors accessible using the errors function. The usual
conditions when this exception is thrown include malformed XML instances and, if validation is

41July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3.1 xml_schema::parsing

turned on, invalid instance documents.

3.3.2 xml_schema::expected_element

struct expected_element: virtual exception
{
 expected_element (const std::basic_string<C>& name,
 const std::basic_string<C>& namespace_);

 const std::basic_string<C>&
 name () const;

 const std::basic_string<C>&
 namespace_ () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::expected_element exception is thrown when an expected element is
not encountered by the DOM-Tree stage. The name and namespace of the expected element can
be obtained using the name and namespace_ functions respectively.

3.3.3 xml_schema::unexpected_element

struct unexpected_element: virtual exception
{
 unexpected_element (const std::basic_string<C>& encountered_name,
 const std::basic_string<C>& encountered_namespace,
 const std::basic_string<C>& expected_name,
 const std::basic_string<C>& expected_namespace)

 const std::basic_string<C>&
 encountered_name () const;

 const std::basic_string<C>&
 encountered_namespace () const;

 const std::basic_string<C>&
 expected_name () const;

 const std::basic_string<C>&
 expected_namespace () const;

July 200642 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3.2 xml_schema::expected_element

 virtual const char*
 what () const throw ();
};

The xml_schema::unexpected_element exception is thrown when an unexpected
element is encountered by the DOM-Tree stage. The name and namespace of the encountered
element can be obtained using the encountered_name and encountered_namespace
functions respectively. If an element was expected instead of the encountered one, its name and
namespace can be obtained using the expected_name and expected_namespace func-
tions respectively. Otherwise these functions return empty strings.

3.3.4 xml_schema::expected_attribute

struct expected_attribute: virtual exception
{
 expected_attribute (const std::basic_string<C>& name,
 const std::basic_string<C>& namespace_);

 const std::basic_string<C>&
 name () const;

 const std::basic_string<C>&
 namespace_ () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::expected_attribute exception is thrown when an expected attribute
is not encountered by the DOM-Tree stage. The name and namespace of the expected attribute
can be obtained using the name and namespace_ functions respectively.

3.3.5 xml_schema::unexpected_enumerator

struct unexpected_enumerator: virtual exception
{
 unexpected_enumerator (const std::basic_string<C>& enumerator);

 const std::basic_string<C>&
 enumerator () const;

 virtual const char*
 what () const throw ();
};

43July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3.4 xml_schema::expected_attribute

The xml_schema::unexpected_enumerator exception is thrown when an unexpected
enumerator is encountered by the DOM-Tree stage. The enumerator can be obtained using the
enumerator functions.

3.3.6 xml_schema::no_type_info

struct no_type_info: virtual exception
{
 no_type_info (const std::basic_string<C>& type_name,
 const std::basic_string<C>& type_namespace);

 const std::basic_string<C>&
 type_name () const;

 const std::basic_string<C>&
 type_namespace () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::no_type_info exception is thrown when there is no type information
associated with a type specified by the xsi:type attribute. This exception is thrown by the
DOM-Tree stage. The name and namespace of the type in question can be obtained using the
type_name and type_namespace functions respectively. Usually, catching this exception
means that you haven’t linked the code generated from the schema defining the type in question
with your application.

3.3.7 xml_schema::not_derived

struct not_derived: virtual exception
{
 not_derived (const std::basic_string<C>& base_type_name,
 const std::basic_string<C>& base_type_namespace,
 const std::basic_string<C>& derived_type_name,
 const std::basic_string<C>& derived_type_namespace);

 const std::basic_string<C>&
 base_type_name () const;

 const std::basic_string<C>&
 base_type_namespace () const;

 const std::basic_string<C>&
 derived_type_name () const;

July 200644 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.3.6 xml_schema::no_type_info

 const std::basic_string<C>&
 derived_type_namespace () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::not_derived exception is thrown when a type specified by the
xsi:type attribute is not derived from the expected base type. This exception is thrown by the
DOM-Tree stage. The name and namespace of the expected base type can be obtained using the
base_type_name and base_type_namespace functions respectively. The name and
namespace of the offending type can be obtained using the derived_type_name and
derived_type_namespace functions respectively.

3.4 Reading from a Local File or URI

Using a local file or URI is the simplest way to parse an XML instance. For example:

using std::auto_ptr;

auto_ptr<type> r1 (name ("test.xml"));
auto_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

3.5 Reading from std::istream

When using an std::istream instance, you may also pass an optional resource id. This id is
used to identify the resource (for example in error messages) as well as to resolve relative paths.
For instance:

using std::auto_ptr;

{
 std::ifstream ifs ("test.xml");
 auto_ptr<type> r (name (ifs, "test.xml"));
}

{
 std::string str ("..."); // Some XML fragment.
 std::istringstream iss (str);
 auto_ptr<type> r (name (iss));
}

45July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

3.4 Reading from a Local File or URI

3.6 Reading from xercesc::DOMInputSource

Reading from a xercesc::DOMInputSource instance is similar to the std::istream
case except the resource id is maintained by the DOMInputSource object. For instance:

xercesc::StdInInputSource is;
xercesc::Wrapper4InputSource wis (is, false);

std::auto_ptr<type> r (name (wis));

3.7 Reading from DOM

Reading from a xercesc::DOMDocument instance allows you to setup a custom XML-DOM
stage. Things like DOM parser reuse, schema pre-parsing, and schema caching can be achieved
with this approach. For more information on how to obtain DOM representation from an XML
instance refer to the Xerces-C++ documentation.

4 Serialization
This chapter covers various aspects of serializing a tree-like in-memory representation to DOM or
XML. In this regard, serialization is complimentary to the reverse process of parsing a DOM or
XML instance into an in-memory representation which is discussed in Chapter 3, "Parsing". Note
that generation of the serialization code is optional and should be explicitly requested with the
--generate-serialization option. See the compiler manual for more information.

Each global XML Schema element in the form:

<xsd:element name="name" type="type"/>

is mapped to eight overloaded C++ functions in the form:

// Serialize to std::ostream.
//
void
name (std::ostream&,
 const type&,
 const xml_schema::namespace_infomap&,
 const string& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (std::ostream&,
 const type&,
 const xml_schema::namespace_infomap&,
 xml_schema::error_handler&,
 const string& encoding = "UTF-8",

July 200646 XML Schema C++/Tree Mapping User Manual, v1.2.3

4 Serialization

 xml_schema::flags = 0);

void
name (std::ostream&,
 const type&,
 const xml_schema::namespace_infomap&,
 xercesc::DOMErrorHandler&,
 const string& encoding = "UTF-8",
 xml_schema::flags = 0);

// Serialize to XMLFormatTarget.
//
void
name (xercesc::XMLFormatTarget&,
 const type&,
 const xml_schema::namespace_infomap&,
 const string& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
 const type&,
 const xml_schema::namespace_infomap&,
 xml_schema::error_handler&,
 const string& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
 const type&,
 const xml_schema::namespace_infomap&,
 xercesc::DOMErrorHandler&,
 const string& encoding = "UTF-8",
 xml_schema::flags = 0);

// Serialize to DOM.
//
xml::auto_ptr<xercesc::DOMDocument>
name (const type&,
 const xml_schema::namespace_infomap&,
 xml_schema::flags = 0);

void
name (xercesc::DOMDocument&,
 const type&,
 xml_schema::flags = 0);

47July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

4 Serialization

You can choose between writing XML to std::ostream or xercesc::XMLFormatTar-
get and creating a DOM instance in the form of xercesc::DOMDocument . Serialization to
ostream or XMLFormatTarget requires a considerably less work while serialization to
DOM provides for greater flexibility.

4.1 Initializing the Xerces-C++ Runtime

Some serialization functions expect you to initialize the Xerces-C++ runtime while others initial-
ize and terminate it as part of their work. The general rule is as follows: if a function has any
arguments or return a value that is an instance of a Xerces-C++ type, then this function expects
you to initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the
runtime for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and termi-
nate functions as long as the calls are balanced.

You can instruct serialization functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize flag (see Section 4.3, "Flags").

4.2 Namespace Infomap and Character Encoding

When a document being serialized uses XML namespaces, prefix-namespace associations need to
be established. Also, if you would like the resulting instance document to contain the
schemaLocation or noNamespaceSchemaLocation attributes, you will need to provide
namespace-schema associations. The xml_schema::namespace_infomap class is used to
capture this information:

struct namespace_info
{
 namespace_info ();
 namespace_info (const string& name, const string& schema);

 string name;
 string schema;
};

// Map of namespace prefix to namespace_info.
//
struct namespace_infomap: public std::map<string, namespace_info>
{
};

Consider the following associations as an example:

xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

July 200648 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.1 Initializing the Xerces-C++ Runtime

This map, if passed to one of the serialization functions, could result in the following XML frag-
ment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.codesynthesis.com/test test.xsd">

As you can see, the serialization function automatically added namespace mapping for the xsi
prefix. You can change this by providing your own prefix:

xml_schema::namespace_infomap map;

map["xsn"].name = "http://www.w3.org/2001/XMLSchema-instance";

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
 xmlns:xsn="http://www.w3.org/2001/XMLSchema-instance"
 xsn:schemaLocation="http://www.codesynthesis.com/test test.xsd">

Another bit of information that you can pass to the serialization functions is the character encod-
ing method that you would like to use. Common values for this argument are "USASCII" ,
"ISO8859-1" , "UTF-8" , "UTF-16BE" , "UTF-16LE" , "UCS-4BE" , and "UCS-4LE" .
The default encoding is "UTF-8" . For more information on encoding methods see the "Charac-
ter Encoding" article from Wikipedia.

4.3 Flags

Serialization flags are the last argument of every serialization function. They allow you to
fine-tune the process of serialization. The flags argument is optional.

The following flags are recognized by the serialization functions:

xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.

For more information on the Xerces-C++ runtime initialization refer to Section 4.1, "Initializing
the Xerces-C++ Runtime".

49July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.3 Flags

http://en.wikipedia.org/wiki/Character_code
http://en.wikipedia.org/wiki/Character_code

4.4 Error Handling

As with the parsing functions (see Section 3.3, "Error Handling"), to better understand error
handling and reporting strategies employed by the serialization functions, it is useful to know that
the transformation of a statically-typed tree to an XML instance document happens in two stages.
The first stage, performed by the generated code, consist of building a DOM instance from the
statically-typed tree . For short, we will call this stage the Tree-DOM stage. The second stage,
performed by Xerces-C++, consists of serializing the DOM instance into the XML document. We
will call this stage the DOM-XML stage.

All serialization functions except the two that serialize into a DOM instance come in overloaded
triples. The first function in such a triple reports error conditions exclusively by throwing excep-
tions It accumulates all the serialization errors of the DOM-XML stage and throws them in a
single instance of the xml_schema::serialization exception (described below). The
second and the third functions in the triple use callback interfaces to report serialization errors
and warnings. The two callback interfaces are xml_schema::error_handler and
xercesc::DOMErrorHandler . The xml_schema::error_handler interface is
described in Section 3.3, "Error Handling". For more information on the xercesc::DOMEr-
rorHandler interface refer to the Xerces-C++ documentation.

The Tree-DOM stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the serialization functions are described in the following sub-sections.

4.4.1 xml_schema::serialization

struct serialization: virtual exception
{
 serialization ();
 serialization (const errors&);

 const errors&
 errors () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::errors class is described in Section 3.3.1,
"xml_schema::parsing ". The xml_schema::serialization exception is thrown if
there were serialization errors reported during the XML-DOM stage. If no callback interface was
provided to the serialization function, the exception contains a list of errors accessible using the
errors function.

July 200650 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.4 Error Handling

4.4.2 xml_schema::unexpected_element

The xml_schema::unexpected_element exception is described in Section 3.3.3,
"xml_schema::unexpected_element ". It is thrown by the serialization functions during
the Tree-DOM stage if the root element name of the provided DOM instance does not match with
the name of the element this serialization function is for.

4.4.3 xml_schema::no_namespace_mapping

struct no_namespace_mapping: virtual exception
{
 no_namespace_mapping (const std::basic_string<C>& namespace_);

 const std::basic_string<C>&
 namespace_ () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::no_namespace_mapping exception is thrown during the Tree-DOM
stage if a namespace is encountered for which a prefix-namespace mapping hasn’t been provided.
The namespace in question can be obtained using the namespace_ function.

4.4.4 xml_schema::no_prefix_mapping

struct no_prefix_mapping: virtual exception
{
 no_prefix_mapping (const std::basic_string<C>& prefix);

 const std::basic_string<C>&
 prefix () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::no_prefix_mapping exception is thrown during the Tree-DOM stage
if a namespace prefix is encountered for which a prefix-namespace mapping hasn’t been
provided. The namespace prefix in question can be obtained using the prefix function.

4.4.5 xml_schema::xsi_already_in_use

struct xsi_already_in_use: virtual exception
{
 virtual const char*
 what () const throw ();
};

51July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.4.2 xml_schema::unexpected_element

The xml_schema::xsi_already_in_use exception is thrown during the Tree-DOM
stage if the xsi prefix is already in use and no user-defined prefix-namespace mapping has been
provided for the http://www.w3.org/2001/XMLSchema-instance namespace.

4.5 Serializing to std::ostream

In order to serialize to std::ostream you will need an in-memory representation, an output
stream and a namespace infomap. For instance:

// Obtain the in-memory representation.
//
std::auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

// Write it out.
//
name (std::cout, *r, map);

Note that the output stream is treated as a binary stream. This becomes important when you use a
character encoding that is wider than 8-bit char , for instance UTF-16 or UCS-4. For example,
things will most likely break if you try to serialize to std::ostringstream with UTF-16 or
UCS-4 as an encoding. This is due to the special value, ’\0’ , that will most likely occur as part
of such serialization and it won’t have the special meaning assumed by
std::ostringstream .

4.6 Serializing to xercesc::XMLFormatTarget

Serializing to an xercesc::XMLFormatTarget instance is similar the std::ostream
case. For instance:

using std::auto_ptr;

// Obtain the in-memory representation.
//
auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";

July 200652 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.5 Serializing to std::ostream

map["t"].schema = "test.xsd";

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
 // Choose a target.
 //
 auto_ptr<XMLFormatTarget> ft;

 if (argc != 2)
 {
 ft = auto_ptr<XMLFormatTarget> (new StdOutFormatTarget ());
 }
 else
 {
 ft = auto_ptr<XMLFormatTarget> (
 new LocalFileFormatTarget (argv[1]));
 }

 // Write it out.
 //
 name (*ft, *r, map);
}

XMLPlatformUtils::Terminate ();

Note that we had to initialize the Xerces-C++ runtime before we could call this serialization func-
tion.

4.7 Serializing to DOM

The mapping provides two overloaded functions that implement serialization to a DOM instance.
The first creates a DOM instance for you and the second serializes to an existing DOM instance.
While serializing to a new DOM instance is similar to serializing to std::ostream or
xercesc::XMLFormatTarget , serializing to an existing DOM instance requires quite a bit
of work from your side. You will need to set all the namespace mapping attributes as well as the
schemaLocation and/or noNamespaceSchemaLocation attributes. The following
listing should give you an idea about what needs to be done:

// Obtain the in-memory representation.
//
std::auto_ptr<type> r = ...

using namespace xercesc;
using namespace xsd::cxx;

XMLPlatformUtils::Initialize ();

53July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.7 Serializing to DOM

{
 DOMImplementation* impl (
 DOMImplementationRegistry::getDOMImplementation (
 xml::string ("LS").c_str ()));

 // Create a DOM instance.
 //
 xml::auto_ptr<DOMDocument> doc (
 impl->createDocument (
 //
 // Root element namespace.
 //
 xml::string ("http://www.codesynthesis.com/test").c_str (),
 //
 // Root element name. Note that the namespace prefix is
 // automatically associated with the root element namespace
 // above.
 //
 xml::string ("t:name").c_str (),
 //
 // Document type object.
 //
 0));

 // Set namespace mapping and schema location attributes.
 //
 DOMElement* root (doc->getDocumentElement ());

 root->setAttributeNS (
 xml::string ("http://www.w3.org/2000/xmlns/").c_str (),
 xml::string ("xmlns:xsi").c_str (),
 xml::string ("http://www.w3.org/2001/XMLSchema-instance").c_str ());

 root->setAttributeNS (
 xml::string ("http://www.w3.org/2001/XMLSchema-instance").c_str (),
 xml::string ("xsi:schemaLocation").c_str (),
 xml::string ("http://www.codesynthesis.com/test test.xsd").c_str ());

 // Serialize to DOM.
 //
 name (*doc, *r);

 // Get an instance of DOMWriter.
 //
 xml::auto_ptr<DOMWriter> writer (impl->createDOMWriter ());

July 200654 XML Schema C++/Tree Mapping User Manual, v1.2.3

4.7 Serializing to DOM

 // Plug in an error handler.
 //
 xml::error_handler<char> eh;
 writer->setErrorHandler (&eh);

 // Set some nice features if the writer supports them.
 //
 if (writer->canSetFeature (XMLUni::fgDOMWRTDiscardDefaultContent, true))
 writer->setFeature (XMLUni::fgDOMWRTDiscardDefaultContent, true);

 if (writer->canSetFeature (XMLUni::fgDOMWRTFormatPrettyPrint, true))
 writer->setFeature (XMLUni::fgDOMWRTFormatPrettyPrint, true);

 // Create a format target that will receive the resulting
 // XML stream from the writer.
 //
 std::auto_ptr<XMLFormatTarget> ft;

 if (argc != 2)
 {
 ft = std::auto_ptr<XMLFormatTarget> (new StdOutFormatTarget ());
 }
 else
 {
 ft = std::auto_ptr<XMLFormatTarget> (
 new LocalFileFormatTarget (argv[1]));
 }

 // Write to the format target.
 //
 writer->writeNode (ft.get (), *doc);
}

XMLPlatformUtils::Terminate ();

For more information on how to create and serialize a DOM instance refer to the Xerces-C++
documentation.

Appendix A — Default and Fixed Values
The following table summarizes the effect of default and fixed values (specified with the
default and fixed attributes, respectively) on attribute and element values. The default
and fixed attributes are mutually exclusive. It is also worthwhile to note that the fixed value
semantics is a superset of the default value semantics.

55July 2006 XML Schema C++/Tree Mapping User Manual, v1.2.3

Appendix A — Default and Fixed Values

default fixed

element

not
present

optional required optional required

not present
invalid
instance

not present invalid instance

empty default value is used fixed value is used

value value is used
value is used provided it’s the same as
fixed

attribute

not
present

optional required optional required

default value is
used

invalid
schema

fixed value is used invalid instance

empty empty value is used
empty value is used provided it’s the
same as fixed

value value is used
value is used provided it’s the same as
fixed

July 200656 XML Schema C++/Tree Mapping User Manual, v1.2.3

Appendix A — Default and Fixed Values

	Preface
	About This Document
	Copyright and License
	Acknowledgements

	1 Introduction
	1.1 Hello World
	1.1.1 Writing XML Document and Schema Definition
	1.1.2 Translating Schema Definition to C++
	1.1.3 Implementing Application Logic
	1.1.4 Compiling and Running

	2 C++/Tree Mapping
	2.1 Preliminary Information
	2.1.1 Identifiers
	2.1.2 Character Type
	2.1.3 XML Schema Namespace

	2.2 Error Handling
	2.2.1 xml_schema::duplicate_id

	2.3 Mapping for import and include
	2.3.1 Import
	2.3.2 Inclusion with Target Namespace
	2.3.3 Inclusion without Target Namespace

	2.4 Mapping for Namespaces
	2.5 Mapping for Built-in Data Types
	2.5.1 Inheritance from Built-in Data Types
	2.5.2 Mapping for anyType
	2.5.3 Mapping for anySimpleType
	2.5.4 Mapping for QName
	2.5.5 Mapping for IDREF
	2.5.6 Mapping for base64Binary and hexBinary

	2.6 Mapping for Simple Types
	2.6.1 Mapping for Derivation by Restriction
	2.6.2 Mapping for Enumerations
	2.6.3 Mapping for Derivation by List
	2.6.4 Mapping for Derivation by Union

	2.7 Mapping for Complex Types
	2.7.1 Mapping for Derivation by Extension
	2.7.2 Mapping for Derivation by Restriction

	2.8 Mapping for Local Elements and Attributes
	2.8.1 Mapping for Members with the One Cardinality Class
	2.8.2 Mapping for Members with the Optional Cardinality Class
	2.8.3 Mapping for Members with the Sequence Cardinality Class

	2.9 Mapping for Global Elements
	2.10 Mapping for Global Attributes
	2.11 Mapping for Anonymous Types
	2.11.1 Anonymous Types for Local Elements and Attributes
	2.11.2 Anonymous Types for Global Elements
	2.11.3 Anonymous Types for Global Attributes

	2.12 Mapping for xsi:type and Substitution Groups
	2.13 Mapping for any, anyAttribute, and Mixed Content Models

	3 Parsing
	3.1 Initializing the Xerces-C++ Runtime
	3.2 Flags and Properties
	3.3 Error Handling
	3.3.1 xml_schema::parsing
	3.3.2 xml_schema::expected_element
	3.3.3 xml_schema::unexpected_element
	3.3.4 xml_schema::expected_attribute
	3.3.5 xml_schema::unexpected_enumerator
	3.3.6 xml_schema::no_type_info
	3.3.7 xml_schema::not_derived

	3.4 Reading from a Local File or URI
	3.5 Reading from std::istream
	3.6 Reading from xercesc::DOMInputSource
	3.7 Reading from DOM

	4 Serialization
	4.1 Initializing the Xerces-C++ Runtime
	4.2 Namespace Infomap and Character Encoding
	4.3 Flags
	4.4 Error Handling
	4.4.1 xml_schema::serialization
	4.4.2 xml_schema::unexpected_element
	4.4.3 xml_schema::no_namespace_mapping
	4.4.4 xml_schema::no_prefix_mapping
	4.4.5 xml_schema::xsi_already_in_use

	4.5 Serializing to std::ostream
	4.6 Serializing to xercesc::XMLFormatTarget
	4.7 Serializing to DOM

	Appendix A ž Default and Fixed Values

